首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report the results of a synchrotron based X-ray diffraction study of bct-Fe2B under quasi-hydrostatic conditions from 0 to 50 GPa. Over this pressure range, no phase change or disproportionation has been observed. A weighted fit of the data to the Birch-Murnaghan equation of state yields a value of the bulk modulus, K, of 164±14 GPa and the first pressure derivative of the bulk modulus, K′, of 4.4±0.5. The compression is found to be anisotropic, with the a-axis being more incompressible than the c-axis.  相似文献   

2.
The structural transition of bulk and uano-size Gd2O3:Eu are studied by high pressure energy disperse x-ray diffraction (XRD) and high pressure photoluminescence. Our results show that in spite of different size of Gd2O3 particles, the cubic structure turns into a possible hexagonal one above 13.4 GPa. When the pressure is released, the sample reverses to the monoclinic structure. No cubic structure presents in the released samples. That is to say, the compression and relaxation of the sample leads to the cubic Gd2O3:Eu then turns into the monoclinic one.  相似文献   

3.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

4.
The equations of state of CeCu2Si2 and CeCu2Ge2 to about 60 GPa, as well as that of CeNi2Ge2 to 22 GPa and the valence state of Ce in CeCu2Ge2 to 20 GPa have been studied at room temperature in a diamond-anvil cell using synchrotron radiation sources. In each compound, the ambient-pressure phase (tetragonal ThCr2Si2-type structure) persisted to the highest pressure studied. The unit cell volumes of CeNi2Ge2 at ∼5 GPa and CeCu2Ge2 at ∼7 GPa, respectively, approached that of CeCu2Si2 taken at ambient pressure. From the equation-of-state data, the bulk modulus was derived to be 112.0±5.1 GPa for CeCu2Si2, 125.6±4.3 GPa for CeCu2Ge2, and 178.4±14.3 GPa for CeNi2Ge2. The valence state of Ce in CeCu2Ge2 remained trivalent throughout the pressure range investigated.  相似文献   

5.
The structural and magnetic properties of ErMn2H4.6 have been studied by X-ray and neutron diffraction up to the pressures of 15 and 6 GPa, respectively. In the pressure range 0<P<3 GPa we observe a first-order phase transition to new high-pressure (HP) phase. The HP phase has the same hexagonal unit cell as the ambient-pressure phase but smaller lattice parameters (ΔV/V=−5%). The structural transition results in suppression of the long-range antiferromagnetic order. Our results suggest that pressure changes positions of the hydrogen atoms in the metal host. We speculate that the new arrangement of hydrogen atoms induces spin frustration and, therefore, suppresses long-range magnetic order in the HP phase.  相似文献   

6.
We have investigated the pressure induced structural changes in pentaerythritol {2,2-bis-(hydroxymethyl)-1,3-propanediol} with the help of X-ray diffraction studies. Our results show that this compound undergoes transformations to a lower symmetry phase between 5.2-5.9 GPa. It further undergoes phase transformations at ∼8.5 and ∼11 GPa; eventually evolving to a disordered phase beyond 14-15 GPa in agreement with our earlier Raman studies. On release of pressure from 18.5 GPa, the compound transforms back to the initial tetragonal phase.  相似文献   

7.
The Raman spectroscopic studies of two rare earth trihydrides: Y H3, HoH3, have been performed in the pressure range from ambient up to 16 GPa and 25 GPa respectively. For the first time samples of REH3 in the form of powder have been studied by Raman spectroscopy using the Diamond Anvil Cell (DAC) technique. A rapid decrease of Raman activity has been observed for the hydrides under pressure values in the vicinity of structural phase transition. Metallization as a possible reason for the observed dramatic change of the REH3 Raman activity has been discussed.  相似文献   

8.
The ambient structural details and the results of room temperature high pressure angle dispersive X-ray diffraction and electrical resistance measurements on the quasi-one-dimensional sulfide, InV6S8, to a pressure of 25 GPa are reported. The material does not undergo a phase transition in this pressure range, though an anomaly in the c/a ratio has been observed around 10 Gpa. A fit of the Murnaghan equation of state to the V/V0 versus pressure data, with the value of the derivative of B0 with respect to pressure, B0, fixed at 4 has yielded a value of the bulk modulus, B0, of 110 GPa. We also present data of the pressure dependence of the lattice constants, a and c, the ratio c/a, and the resistance at room temperature.  相似文献   

9.
Proton-deuteron mutual diffusion in a CsHSO4/CsDSO4 solid at 373 K was examined up to 3 GPa by an infrared mapping measurement. Phases HPHT1 and HPHT2 appeared at 1.5 and 2.3 GPa, respectively, after heating. These phases were found to be stable at room temperature, while phase IV, which appeared on compression at room temperature, was metastable. The pressure dependence of the proton-deuteron mutual diffusion coefficient was determined from the temporal change in the deuteron distribution of the solid. The coefficient decreased from 7×10−16 to 1×10−16 m2/s during the transition from phase II to HPHT1 at 1.5 GPa, and showed no significant change during the transition to phase HPHT2. These results suggested that in addition to the hydrogen bond length, other structural factors might also have had an influence on the rate of diffusion.  相似文献   

10.
The shift of the Curie temperature of CrO2 with pressure was determined by ac-susceptibility measurements under hydrostatic pressure up to 5 GPa. These experiments show that ferromagnetism of CrO2 is suppressed at a rate , which is close to recent theoretical estimates.  相似文献   

11.
We have studied the high-pressure phase stability of LaF3 using full-potential linear augmented plane wave method. We have shown that experimentally observed orthorhombic phase is less stable compared to the theoretically predicted tetragonal structure above 25 GPa pressure. The structural transition is mainly due to the steric repulsion of ions and electrons to higher pressures.  相似文献   

12.
The pressure dependence of the thermoelectric power of monoclinic As2Te3 is measured up to 10 GPa using a Mao-Bell diamond anvil cell. The thermoelectric power never reaches an absolute value greater than the ambient pressure value of 242 μV/K. Evidence of a phase transition is present between 6 and 8 GPa where the thermoelectric power reaches an absolute value of 225 μV/K after passing through a minimum of S≈75 μV/K. X-ray diffraction experiments confirm that the resulting structure is β-As2Te3, which is isostructural with Bi2Te3 and Sb2Te3.  相似文献   

13.
X-ray diffraction patterns from magnesium oxide compressed in a diamond anvil cell up to 55 GPa have been recorded and the differential stress (a measure of compressive strength) and grain-size (crystallite size) determined as a function of pressure from the line-width analysis. The strength agrees well with the uniaxial stress component (another measure of compressive strength) derived earlier from the line-shift data. The strength increases while the crystallite size decreases steeply as the pressure is raised from ambient to ∼10 GPa. The increase in strength is much smaller at higher pressures. The strength-pressure data are explained by combining the grain-size dependence of strength and the shear-modulus scaling law. The dependence of strength on grain-size has not been considered in the past in the discussion of high-pressure strength data.  相似文献   

14.
High-pressure studies of samarium trihydride have been performed in a diamond anvil cell at pressures up to 30 GPa at room temperature. As a result, a reversible structural phase transformation from the hexagonal to the cubic phase has been observed. The transition pressure and the lattice parameter follow the tendency of the other lanthanide trihydrides investigated earlier [T. Palasyuk, M. Tkacz, Solid State Commun. 130 (2004) 219; T. Palasyuk, M. Tkacz, Solid State Commun. 133 (2005) 477; T. Palasyuk, M. Tkacz, Solid State Commun. 133 (2005) 481]. The compressibility systematics of lanthanide and yttrium trihydrides has been established.  相似文献   

15.
The compression behavior of delafossite-type metallic oxide PdCoO2 below 10 GPa has been investigated by in situ high pressure X-ray diffraction measurement using synchrotron radiation. It is found that the delafossite-type structure of PdCoO2 is stable below 10 GPa. It should be noted that compression behavior of PdCoO2 is anisotropic. Pressure dependence of the lattice parameters indicates that the a-axis is more compressible than the c-axis. The lattice parameter ratio c/a in the hexagonal unit increases with increasing pressure. The calculated zero-pressure bulk modulus is 224 GPa. It is found that the above characteristic compression behaviors of PdCoO2 are the same as those of the delafossite CuFeO2. The compressibilities of the a-axis of both PdCoO2 and CuFeO2 are highly different although those of the c-axis are almost the same.  相似文献   

16.
The results of electrical resistance and angle dispersive X-ray diffraction measurements at high pressures and ambient temperature on the chalcogenide spinel, CuIr2S4 are reported. The resistance increases gradually and reaches around 12 GPa a value that is approximately forty times the initial value. Above 15 GPa, the resistance decreases up to 30 GPa and on further pressure increase tends to saturate at a value slightly above the ambient pressure value. Thus, the material exhibits a reentrant high conducting phase under pressure. The behaviour of the electrical resistance exhibits a close correlation with the structural evolution with pressure.  相似文献   

17.
The thermoelectric materials CoSb3 and LaFe3CoSb12 with skutterudite structure were subjected to high pressures using a diamond anvil high-pressure cell up to 20 GPa. Energy-dispersive X-ray diffraction was used to determine the dependence of the lattice parameter on pressure. No major change in the X-ray diffraction spectra was observed for both compounds, constituting evidence that both compounds are stable within this pressure range, despite their relatively open structures. Three distinct isothermal equations of state for solids under high pressure were fitted to the experimental data to determine the bulk modulus for both compounds. The filled skutterudite showed a greater compressibility than the unfilled one, this difference can be understood in terms of the larger lattice parameter of the former.  相似文献   

18.
The crystal structure of the new quaternary compound CuTa2InTe4 was studied using X-ray powder diffraction data. The powder pattern refined by the Rietveld method indicates that this material crystallizes in the tetragonal system with space group I-4¯2m (No. 121), Z=2, and unit cell parameters a=6.1963(2) Å, c=12.4164(4) Å, c/a=2.00 and V=476.72(3) Å3. The structural and instrumental refinement of 28 parameters led to Rp=10.4%, Rwp=11.1%, Rexp=6.8% and χ2=2.7 for 96 independent reflections.  相似文献   

19.
We have investigated the behavior of red mercuric iodide (α-HgI2) under high pressures using in situ X-ray diffraction and optical absorption techniques. Our experimental results indicate that the tetragonal→orthorhombic phase transformation, observed at 1.4 GPa, is accompanied by an abrupt increase in the band gap while the nature of the gap does not change. However, across the orthorhombic→hexagonal phase transformation, observed at ∼7.2 GPa, the gap decreases discontinuously and changes from direct to indirect type. These studies suggest that HgI2 may metallize at ∼40 GPa, if not prevented by any other structural change.  相似文献   

20.
Effects of X-ray irradiation on the crystal structure and the electrical resistance were examined at low temperatures for the insulating phase of spinel compound CuIr2S4. We found that the resistance decreases by more than five decades by irradiation at 8.5 K. The structural change from triclinic to tetragonal was observed at the same time. The X-ray-induced conductance is deduced to result from the destruction of Ir4+ dimers formed in the insulating phase. Slow relaxation of the resistance in the X-ray-induced state is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号