首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of electric field. The binding energy is calculated following a variational procedure within the effective mass approximation along with the spatial depended dielectric function. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. It is found that the contribution of spatially dependent screening effects are small for a donor impurity and it is concluded that the rectangulax confinement is better than the parabolic and spherical confinements. These results are compared with the existing literature.  相似文献   

2.
Exciton binding energies, oscillator strength, optical rectification coefficients and second harmonic generation are investigated using three different confinement potentials in a CdO/ZnO core/shell quantum dot. The bare potential, Smorodinsky–Winternitz potential and Woods–Saxon potential are employed in the Hamiltonian. The position dependent dielectric function is used. The electronic properties are found using variational formulism within a single band effective mass approximation whereas the optic properties are investigated using compact density matrix approach. The results show that different confinement potentials lead to significant changes in the coefficients of optical rectification and the second harmonic generations and the effects of confined potentials are more pronounced in the strong confinement region. The resonant peaks in the nonlinear optical rectification coefficients and second harmonic generation are blue shifted to larger photon energies with the various confined potentials and the results are enhanced using Smorodinsky–Winternitz potential. The obtained results can be applied for the potential applications for fabricating opto-electronic devices.  相似文献   

3.
Based on the continuum elastic theory, this paper presents a finite element analysis to investigate the influences of elastic anisotropy and thickness of spacing layer on the strain field distribution and band edges (both conduction band and valence band) of the InAs/GaAs conical shaped quantum dots. To illustrate these effects, we give detailed comparisons with the circumstances of isolated and stacking quantum dot for both anisotropic and isotropic elastic characteristics. The results show that, in realistic materials design and theoretical predication performances of the optoelectronic devices, both the elastic anisotropy and thickness of the spacing layer of stacked quantum dot should be taken into consideration.  相似文献   

4.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1−xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

5.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1?xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

6.
The quantum dots of antimony trisulphide, a potential semiconductor for various applications, are grown in glass matrix for the first time and are characterized by various techniques. The dependence of the average dot size on growth parameters like growth temperature and time is systematically studied for the dot size range of 5–80 nm. The linear blue shift of band gap of dots with inverse square of dot size clearly indicates the typical behavior of quantum dots in a strong quantum confinement regime. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A three-dimensional finite element method is developed to simulate the surface morphological evolution during the Stranski-Krastanov heteroepitaxial growth. In the formulation, the surface evolves through surface diffusion driven by the gradient of the surface chemical potential, which includes the elastic strain energy, elastic anisotropy and surface energy. Surface condensation rate is assumed to depend on the difference between the surface chemical potential and the chemical potential of the vapor phase. Our simulations reveal that the self-assembly of quantum dots are strongly dependent on the variation of growth rate and elastic anisotropy strength. With appropriate choice of growth rate and elastic anisotropy strength, a relatively more uniform and regular quantum dot array can be obtained.  相似文献   

8.
The magnetic field-dependent heavy hole excitonic states in a strained Ga0.2In0.8As/GaAs quantum dot are investigated by taking into account the anisotropy,non-parabolicity of the conduction band,and the geometrical confinement.The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material.The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured.The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field.The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied.The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga0.2In0.8As/GaAs quantum dot.Heavy hole excitonic absorption spectra,the changes in refractive index,and the third-order susceptibility of third-order harmonic generation are investigated in the Ga0.2In0.8As/GaAs quantum dot.The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.  相似文献   

9.
This paper presents a finite element method of calculating strain distributions in and around the self-organized GaN/AlN hexagonal quantum dots. The model is based on the continuum elastic theory, which is capable of treating a quantum dot with an arbitrary shape. A truncated hexagonal pyramid shaped quantum dot is adopted in this paper. The electronic energy levels of the GaN/AlN system are calculated by solving a three-dimension effective mass Shrodinger equation including a strain modified confinement potential and polarization effects. The calculations support the previous results published in the literature.  相似文献   

10.
Optical properties of InGaAsN/GaAs and InGaAsN/GaAsN/GaAs quantum well structures with InGaP cladding layers were studied by photoreflectance at various temperatures. The excitonic interband transitions of the InGaAsN/GaAsN/GaAs QW systems were observed in the spectral range above =Eg(InGaAsN). The confinement potential of the system with strain compensating GaAsN barriers became one step broader, thus more quantum states and larger optical transition rate were observed. A matrix transfer algorithm was used to calculate the subband energies numerically. Band gap energies, effective masses were adopted from the band anti-crossing model with band-offset values adjusted to obtain the subband energies to best fit the observed optical transition features. A spectral feature below and near the GaAs band gap energy from GaAs barriers is enhanced by the GaAs/InGaP interface space charge accumulation induced internal field.  相似文献   

11.
Quantum states and energy levels of an electron in a cylindrical quantum dot with different models of confinement potentials are studied. Two models of confinement potentials, Morse potential and modified Pöschl-Teller potential, are considered. It is shown that due to distinction between symmetric and asymmetric nature of potentials, there is a fundamental difference in behavior of the ground levels of charge carriers in these potentials. At small values of the width of Morse potential, quantum emission of electron occurs which is not observed in case of the modified Pöschl-Teller potential.  相似文献   

12.
In the limit of strong electron-phonon coupling, we analyze the stability of two dimensional bipolarons in a two-axis elliptic potential well of harmonic boundaries. The confined two-polaron wavefunction adopted here makes the electrons to form either a bipolaronic bound state or go into a composite state of two separated polarons bounded inside the same potential well. The methodology involves the mean polaron-polaron separation treated as an adjustable parameter to be determined variationally. By tuning the barrier slopes of the confining potential we obtain an explicit tracking of the criterion for bipolaron stability encompassing the particular cases of a two dimensional circular dot or a planar strip-like quantum well wire. We observe that, while an increased degree of confinement enhances bipolaronic stability, the effect of anisotropy is to inhibit bipolaron formation. Received 30 July 2001 and Received in final form 28 January 2002  相似文献   

13.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

14.
We describe photoluminescence measurements made on mesa geometry quantum dots and wires with exposed side walls fabricated by laterally patterning undoped GaAs/AlGaAs quantum wells using electron beam lithography and dry etching. At low temperature the photoluminescence efficiency of many but not all of the GaAs quantum dot arrays scales with the volume of quantum well material down to lateral dimensions of 50nm. This behaviour contrasts with that found in wires produced at the same time where the intensity falls off rapidly with decreasing wire width for dimensions below 500nm but is recovered by overgrowth with indium tin oxide, possibly as a result of strain. Narrow overgrown wires exhibit anisotropy in polarized excitation spectra which is discussed in relation to strain and lateral confinement effects.  相似文献   

15.
计及量子点厚度下,分别选取抛物势和高斯势描写盘型量子点中电子的横向束缚势和纵向束缚势,采用Pekar类型变分法推导出量子点中极化子的基态和第一激发态能量本征值和本征函数,以此为基础,构造了一个二能级结构,并基于二能级体系理论,讨论了极化子在外电场作用下的量子跃迁问题。结果表明,高斯束缚势比抛物束缚势更能精准反映量子点中真实的束缚势;量子点的厚度对极化子的跃迁几率Q所带来的影响有趣且有实际意义,不可忽略;电声耦合强度α、电场强度F、非对称高斯势的势垒高度V0和束缚范围L等对极化子的基态与第一激发态能量以及量子跃迁的影响显著;本文的结果有助于探讨利用这些物理量来调控量子点的输运特性和光学性质的途径和方法。  相似文献   

16.
Transient photoluminescence of GaAs/AlGaAs quantum wires and quantum dots formed by strain confinement is studied as a function of temperature. At low temperature, luminescent decay times of the wires and dots correspond to the radiative decay times of localized excitons. The radiative decay time can be either longer or shorter than that of the host quantum well, depending on the size of the wires and dots. For small wires and dots (∼ 100 nm stressor), the exciton radiative recombination rate increases due to lateral confinement. Exciton localization due to the fluctuation of quantum well thickness plays an important role in the temperature dependence of luminescent decay time and exciton transfer in quantum wire and dot structures up to at least ∼ 80 K. Lateral exciton transfer in quantum wire and dot structures formed by laterally patterning quantum wells strongly affects the dynamics of wire and dot luminescence. The relaxation time of hot excitons increases with the depth of strain confinement, but we find no convincing evidence that it is significantly slower in quasi 1-D or 0-D systems than in quantum wells.  相似文献   

17.
This article reviews the current state of research involving semiconductor quantum dots, provides a brief review of the theory behind their unique properties, and an introduction explaining the importance of quantum dot research. The characteristic shifting of the band gap energy with quantum dot size, as predicted from the density of states for low-dimensional structures, allows experimental measurements to determine the extent to which quantum confinement effects play a role in the resulting properties. A few of the current techniques used to measure the presence and physical characteristics of quantum dots and their energy levels is reviewed, including transmission electron microscopy, optical transmission, and Raman and photoluminescence spectroscopy. Finally, some of the more exciting applications for quantum dots currently being researched for use in the field of optoelectronics are reviewed, including quantum dot infrared photodetectors, quantum dot lasers, and quantum dot solar cells. Comments are made on the current progress and the future prospects of quantum dot research and device applications.  相似文献   

18.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

19.
Laser dependence of binding energy on exciton in a GaAs quantum well wire embedded on an AlGaAs wire within the single band effective mass approximation is investigated. Laser dressed donor binding energy is calculated as a function of wire radius with the renormalization of the semiconductor gap and conduction valence effective masses. We take into account the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The spatial dielectric function and the polaronic effects have been employed in a GaAs/AlGaAs quantum wire. The numerical calculations reveal that the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, the polaronic effect enhances the binding energy considerably and the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude.  相似文献   

20.
The effect of laser field on the binding energy in a GaAs/Ga11−xAlxAs quantum well within the single band effective mass-approximation is investigated. Exciton binding energy is calculated as a function of well width with the renormalization of the semiconductor gap and conduction valence effective masses. The calculation includes the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model. The 2D Hartree–Fock spatial dielectric function and the polaronic effects have been employed in our calculations. We investigate that reduction of binding energy in a doped quantum well due to screening effect and the intense laser field leads to semiconductor–metal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号