首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dielectric spectroscopy of a short pitch and high spontaneous polarization ferroelectric liquid crystal mixture and its guest-host derivatives with different wt/wt ratio of anthraquinone blue dichroic dye has been studied over a wide frequency range of 50 Hz-1 MHz. The increase in dye concentration results in the decrease of the permittivity of the material in the SmC* phase, however, an opposite effect is observed in the SmA phase. The influence of bias voltage on the dielectric parameters has also been investigated. A new relaxation mode has been observed with a relaxation frequency of ∼300 kHz and dielectric strength of ∼5 at room temperature.  相似文献   

2.
Soft magnetic composites with a thin MgO insulating layer were produced by a sol-gel method. Energy dispersive X-ray spectroscopy, X-ray analysis, Fourier transform infrared spectroscopy, density measurement and compositional maps confirmed that thin layers of MgO covered the iron powders. Coercivity measurement showed that the stress relaxation and reduction of hysteresis loss efficiently occurred at 600 °C. At this temperature, the phosphate insulation of commercial SOMALOYTM samples degrade and their electrical resistivity, magnetic permeability and operating frequency decreases noticeably. The results show that the MgO insulation has a greater heat resistance than conventional phosphate insulation, which enables stress-relief at higher temperatures (600 °C) without a large increase in eddy current loss. The results of annealing at 600 °C show that the electrical resistivity and ferromagnetic resonance frequency increased from 11 μΩ m and 1 kHz for SOMALOYTM samples to 145 μΩ m and 100 kHz for the MgO insulated composites produced in this work.  相似文献   

3.
Dielectric spectroscopy of an antiferroelectric liquid crystal material (S)-4-(1-methylheptyloxycarbonyl)phenyl-4′-(6-pentanoyloxyhex-1-oxy)biphenyl-4-carboxylate 4H6Bi(S) for its helical phases has been carried out under bias electric field in the frequency range 0.1 Hz-10 MHz. Bias field investigation has been carried out in order to explore new relaxation modes. Dielectric characterization of the material, when carried out as a function of DC bias, reveals soft mode around 350 kHz and domain mode at ∼100 Hz in the SmC? phase as a consequence of suppression of Goldstone mode due to helix unwinding. In the SmC?A phase a field induced new relaxation mode has been investigated at 8.0 kV/cm having relaxation frequency from 100 Hz to 600 Hz with increasing bias electric field.  相似文献   

4.
S. Ogawa 《Surface science》2007,601(18):3838-3842
Ultraviolet photoelectron spectroscopy was used to measure the oxygen uptake, changes in work function due to the surface dipole layer of adsorbed-oxygen atoms, Δ?SDL, and changes in band bending due to the defect-related midgap state, ΔBB, simultaneously during oxidation on Si(0 0 1) surface at room-temperature, RT, under an O2 pressure of 1.3 × 10−5 Pa. The oxygen dosage dependence of Δ?SDL revealed that dissociatively adsorbed-oxygen atoms occupy preferentially dimer backbond sites at the initial stage of Langmuir-type adsorption, which is associated with a rapid increase of ΔBB. When raising temperature to ∼600 °C, such preferential occupation of the dimer backbond sites by oxygen atoms is less significant and ΔBB becomes smaller in magnitude. The observed relation between Δ?SDL and ΔBB indicates that point defects (emitted Si atoms + vacancies) are more frequently generated by oxygen atoms diffusing to the dimer backbond sites at lower temperature in RT −600 °C.  相似文献   

5.
This paper investigates the effect of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites (50 Hz-1000 kHz). The results showed that the optimum amount of phenolic resin to attain maximum permeability and minimum loss factor at 10 kHz is 0.7 wt% for samples containing iron powder with average particle size ∼150 μm compacted at 800 MPa. In accordance with this resin content, at high frequencies (>300 kHz), the sample with lower particle size ∼10 μm exhibits higher magnetic permeability, higher operating frequencies and lower imaginary part of permeability. With increase in the compaction pressure, specific resistivity decreases and imaginary and real parts of permeability increase at low frequencies.  相似文献   

6.
Na0.5Bi(0.5−x) SmxTiO3 (NBST) ceramics with x=0.05, 0.1, and 0.15 are prepared through chemical route. The X-ray diffraction studies confirmed the formation of single phase. Dielectric measurements in the temperature region ranging from room temperature (∼30 °C) to 600 °C at different frequencies (10 kHz-1 MHz) showed anomalies at 130, 306, and 474 °C (at 10 kHz frequency) for x=0.05 sample. Other samples showed only two peaks. To establish the electrical nature of these relaxations, impedance measurements are done at different temperatures and frequencies. The relaxation time, obtained from both impedance and modulus data, is found to decrease with increase in temperature. The relaxations observed are of non-Debye type. Increase in samarium content increases the activation energy for relaxation.  相似文献   

7.
The present paper reports the effect of Pb impurity (low ∼2 at% and high ∼10 at%) on the ac conductivity (σac) of a-Ge20Se80 glass. Frequency-dependent ac conductance and capacitance of the samples over a frequency range ∼100 Hz to 50 kHz have been taken in the temperature range ∼268 to 358 K. At frequency 2 kHz and temperature 298 K, the value of σac increases at low as well as at higher concentration of Pb. σac is proportional to ωs for undoped and doped samples. The value of frequency exponent (s) decreases as the temperature increases. The static permittivity (εs) increases at both Pb concentrations. These results have been explained on the basis of some structural changes at low and higher concentration of Pb impurity.  相似文献   

8.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

9.
The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces ((1 0 0), (1 1 0) and (1 1 1)) at room temperature. The results show that the oxide film growth kinetics is independent of the crystallographic orientation under the present conditions. Beyond a transition regime (100 ps) the growth kinetics follow a direct logarithmic law and present a limiting thickness of ∼3 nm. The obtained amorphous structure of the oxide film has initially Al excess (compared to the composition of Al2O3) and evolves, during the oxidation process, to an Al percentage of 45%. We observe also the presence of an important mobile porosity in the oxide. Analysis of atomistic processes allowed us to conclude that the growth proceeds by oxygen atom migration and, to a lesser extent, by aluminum atoms migration. In both cases a layer-by-layer growth mode is observed. The results are in good agreement with both experiments and earlier MD simulations.  相似文献   

10.
We report an experimental study on the relationship between the optical activity of Ge-oxygen deficient centers and dynamic properties and conformational heterogeneity of vitreous matrix in silica. We focus our attention on the absorption band at ∼5.2 eV (B) and on the two related emissions at ∼4.2 eV (αE) and at ∼3.1 eV (β). From the temperature dependence of B band we estimate a mean energy value of 26 meV for local vibrational modes coupled to the electronic transition, suggesting that the chromophore and its surrounding have access to low frequency dynamics. From the thermal behavior of the two emissions we distinguish the two competitive relaxation processes from the first singlet excited state S1: the radiative one, giving rise the αE band, and the thermally activated intersystem-crossing process between S1 and the triplet state T1, originating the β band. The intersystem-crossing rate increases on increasing the temperature, determining an opposite thermal behavior of the intensity of the two emissions. However, this temperature dependence cannot be rationalized by a simple Arrhenius law and the αE decay kinetics at high temperatures do not follow a single exponential law, suggesting a complex landscape of configurational energies of the process.  相似文献   

11.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

12.
The thermal oxidation process of metallic zinc on 6H-SiC(0 0 0 1) surface has been investigated by using atomic force microscopy (AFM), synchrotron radiation photoelectron spectroscopy (SRPES) and XPS methods. The AFM images characterize the surface morphology of ZnO film formed during the thermal oxidation and SRPES record the valence band, Si 2p and Zn 3d spectra at different stages. The O 1s peak is recorded by XPS because of the energy limit of the synchrotron radiation. Our results reveal that the silicon oxides layer of SiC substrate can be reduce by hot metallic zinc atom deposition. The oxygen atoms in the silicon oxides are captured by the zinc atoms to form ZnOx at the initial stage and as a result, the oxidized SiC surface are deoxidized. After the zinc deposition with the final thickness of 2.5 nm, the sample is exposed in oxygen atmosphere and annealed at different temperatures. According to the evolution of peaks integrated intensities, it is considered that the Zn/SiC system will lose zinc atoms during the annealing in oxygen flux at high temperature due to the low evaporation temperature of pure zinc. After further annealing in oxygen flux at higher temperature, the substrate is also oxidized and finally the interface becomes a stable SiC-SiOx-ZnO sandwich structure.  相似文献   

13.
Transparent conductive ZnO:Ga thin films were deposited on Corning 1737 glass substrate by pulsed direct current (DC) magnetron sputtering. The effects of process parameters, namely pulse frequency and film thickness on the structural and optoelectronic properties of ZnO:Ga thin films are evaluated. It shows that highly c-axis (0 0 2) oriented polycrystalline films with good visible transparency and electrical conductivity were prepared at a pulsed frequency of 10 kHz. Increasing the film thickness also enlarged the grain size and carrier mobility which will subsequently lead to the decrease in resistivity. In summary, ZnO:Ga thin film with the lowest electrical resistivity of 2.01 × 10−4 Ω cm was obtained at a pulse frequency of 10 kHz with 500 nm in thickness. The surface RMS (root mean square) roughness of the film is 2.9 nm with visible transmittance around 86% and optical band gap of 3.83 eV.  相似文献   

14.
The dielectric properties, dc and ac electrical resistivities of Mg substituted Ni–Cu ferrites with general formula Ni0.5Cu0.5−xMgxFe2O4 (0.0≤x≤0.5) have been investigated as a function of frequency, temperature and composition. ac resistivity of all the samples decreases with increase in the frequency exhibiting normal ferrimagnetic behavior. The frequency dependence of dielectric loss tangent showed a maximum in between 10 Hz and 1 kHz in all the ferrites. The conductivity relaxation of the charge carriers was examined using the electrical modulus formulism, and the results indicate the presence of the non-Debye type of relaxation in the prepared ferrites. Similar values of activation energies for dc conduction and for conductivity relaxation reveal that the mechanism of electrical conduction and dielectric polarization is the same in these ferrites. A single ‘master curve’ for normalized plots of all the modulus isotherms observed for a given composition indicates that the distribution of relaxation time is temperature independent. The saturation magnetization and coercivity as calculated from the hysteresis loop measurement show striking dependence on composition.  相似文献   

15.
The mechanical reliability of transparent In-Zn-Sn-O (IZTO) films grown using pulsed DC magnetron sputtering with a single oxide alloyed ceramic target on a transparent polyimide (PI) substrate at room temperature is investigated. All IZTO films deposited at room temperature have an amorphous structure. However, their optical and electrical properties change depending on the oxygen partial pressure applied during depositing process. At an oxygen partial pressure of 3%, the films exhibit a resistivity of 8.3 × 10−4 Ω cm and an optical transmittance of 86%. Outer bending tests show that the critical bending radius decreases from 10 mm to 7.5 mm when the oxygen partial pressure increases from 1% to 3%. In the inner bending test, the critical bending radius is independent of oxygen partial pressure at 3.5 mm, indicating excellent film flexibility. In the dynamic fatigue test, the electrical resistance of the films reduces by less than 1% for more than 2000 bending cycles. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison to ITO films.  相似文献   

16.
G.J. Xu 《Surface science》2005,577(1):77-85
Halogen molecules dissociatively chemisorb on Si(1 0 0)-(2 × 1), and the bonding structures that they adopt can be elucidated with scanning tunneling microscopy. Of the Cl, Br, and I group, Cl has the highest single atom diffusion barrier, and both single and paired adatoms are observed at 295 K. The barrier is smaller for Br, and the adatoms can interrogate the surface until they form pairs, which are then immobile, or are trapped at C-type defects. The barrier is smallest for I, allowing the formation of pairs and trapped states, but the pairs are mobile at ambient temperature. Their motion is thermally activated, the events are random, and the diffusivities along and across the dimer row are ∼0.42 and ∼0.17 Å2/s at 295 K. The respective energy barriers for pairwise diffusion are ∼0.76 and ∼0.82 eV, assuming an attempt frequency of 1012 s−1. Studies over long times reveal that pairwise diffusion at low coverage is ultimately quenched by the increasing density of C-type defects, i.e. the increasing amounts of dissociated H2O.  相似文献   

17.
Surface structure of O-adsorbed W(0 0 1) surface after annealing to 1200 K has been analyzed by low energy electron diffraction at 77 K as well as at room temperature. The optimum structure has tungsten missing rows and oxygen double rows. Furthermore, the R-factor is minimized at the structure that O atoms are adsorbed on one of the two different threefold hollow sites of the (1 1 0) facet appearing on the W(0 0 1)2 × 1 with missing row. However, the results suggest that two domains of O atoms adsorbed on both the two different threefold hollow sites coexist. Then, I-V curves have been analyzed as a function of the mixing ratio of the two domains having different O adsorption sites at room and low temperatures. The energy difference between these two sites has been estimated to be 6.5 meV from the temperature dependence of the mixing ratio.  相似文献   

18.
Electronic, magnetic and structural properties of atomic oxygen adsorbed in on-surface and subsurface sites at the two most densely packed iron surfaces are investigated using density functional theory combined with a thermodynamics formalism. Oxygen coverages varying from a quarter to two monolayers (MLs) are considered. At a 1/4 ML coverage, the most stable on-surface adsorption sites are the twofold long bridge sites on the (1 1 0), and the fourfold-hollow sites on the (1 0 0) surface. The presence of on-surface oxygen atoms enhances the magnetic moments of the atoms of the two topmost Fe layers. Detailed results on the surface magnetic properties, due to O incorporation, are presented as well. Subsurface adsorption is found unfavored. The most stable subsurface O, in tetrahedral positions at the (1 0 0) and octahedral ones at the (1 1 0) surface, are characterized by substantially lower binding than that in the on-surface sites. Subsurface oxygen increases the interplanar distance between the uppermost Fe layers. The preadsorbed oxygen overlayer enhances binding of subsurface O atoms, particularly for tetrahedral sites beneath the (1 1 0) surface.  相似文献   

19.
The complex perovskite oxide a barium samarium niobate (BSN) synthesized by solid-state reaction technique has single phase with cubic structure. The scanning electron micrograph of the sample shows the average grain size of BSN∼1.22 μm. The field dependence of dielectric response and loss tangent were measured in the temperature range from 323 to 463 K and in the frequency range from 50 Hz to 1 MHz. The complex plane impedance plots show the grain boundary contribution for higher value of dielectric constant in the low frequency region. An analysis of the dielectric constant (ε′) and loss tangent (tan δ) with frequency was performed assuming a distribution of relaxation times as confirmed by the scaling behaviour of electric modulus spectra. The low frequency dielectric dispersion corresponds to DC conductivity. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with an activation energy of 0.71 eV. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary part of electric modulus M″ and dielectric loss spectra suggest that the relaxation describes the same mechanism at various temperatures in BSN. All the observations indicate the polydispersive relaxation in BSN.  相似文献   

20.
The electrical properties of a single crystal of KTiOPO4 was studied by impedance spectroscopy methods in the temperature range –100 to 100 °C. The complex resistivity decreases rapidly with increasing temperature, and resistivity dispersion begins at a temperature of TS=-80 °C. The complex resistivity was fitted to the superposition of two Cole-Cole-type relaxations. The low frequency relaxation is associated with the electrode/crystal surface, while the high frequency relaxation is interpreted as resulting from ion migration in the bulk. It is believed that high frequency relaxation is related to ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energies associated with hopping conduction are Ea0.21 eV above TS and Ea0.11 eV below TS . PACS 77.22.-d; 77.22.Gm; 66.10.Ed; 77.84.-s; 66.30.Hs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号