首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1H nuclear magnetic resonance (NMR) was employed in order to investigate the phase transitions in a two-dimensional antiferroelectric system, squaric acid (H2C4O4). As a result, in addition to the critical behaviors around the long range order phase transition, similar behaviors were observed at higher temperatures where a short range order phase transition presumably takes place.  相似文献   

2.
At 141 °C the solid acid CsHSO4 is known to undergo transition to a superprotonic phase that is characterized by dramatic (several-order-of-magnitude) increases in hydrogen ion conductivity. Proton NMR spin-spin relaxation time T2 measurements reported here for CsHSO4 also reveal substantial increases (factors of 20-30) in the vicinity of the transition temperature. In the temperature range just below the transition (70-136 °C), T2 increases by a factor of order 10 relative to the rigid-lattice regime, suggesting motional narrowing of the NMR resonance line. In the regime of motional narrowing, the activation energy barrier to diffusion is 0.40 eV, as determined from the present T2 results. NMR spin-lattice relaxation T1 measurements also show behavior consistent with transition to a regime of rapid hydrogen motion. In particular, proton T1's decrease with temperature (from 80 to 120 °C), and then drop sharply near the transition temperature. Above the transition temperature, T1 exhibits a minimum in which the correlation time is found to be ∼2 ns.  相似文献   

3.
The longitudinal and transverse nuclear magnetic relaxation rates 1/T 1(T) and 1/T 2(T) are calculated for three- and two-dimensional (3D and 2D) metallic ferro- and antiferromagnets (FM and AFM) with localized magnetic moments in the spin-wave temperature region. The contribution of the one-magnon decay processes is strongly enhanced in comparison with the standard T-linear Korringa term, especially for the FM case. For the 3D AFM case this contribution diverges logarithmically, the divergence being cut at the magnon gap ω due to magnetic anisotropy, and for the 2D AFM case as ω-1. The electron-magnon scattering processes yield T 2ln(T) and T 21/2-terms in 1/T 1 for the 3D AFM and 2D FM cases, respectively. The two-magnon (“Raman”) contributions are investigated and demonstrated to be large in the 2D FM case. Peculiarities of the isotropic 2D limit (where the correlation length is very large) are analyzed. Received 29 November 1999 and Received in final form 6 June 2000  相似文献   

4.
Theory of carrier mediated ferromagnetism in dilute magnetic oxides   总被引:1,自引:0,他引:1  
We analyze the origin of ferromagnetism as a result of carrier mediation in diluted magnetic oxide semiconductors in the light of the experimental evidence reported in the literature. We propose that a combination of percolation of magnetic polarons at lower temperature and Ruderman-Kittel-Kasuya-Yosida ferromagnetism at higher temperature may be the reason for the very high critical temperatures measured (up to ∼700 K).  相似文献   

5.
NMR measurements have revealed that methane can exist in coal samples in the state of solid solution rather than only adsorbed gas, opening new ways to prevention of gas dynamic accidents in underground coal mines and true estimation of coalbed methane resources.Understanding molecular structure of coal constituents and forms of methane occurrence in coal is the only way of extracting safely either coal or methane. We had studied nuclear magnetic resonance lines in various coals at room or low temperatures and have found that there exist three species of methane molecules differing in molecular mobility. Based on estimated diffusion parameters, these species were attributed to free methane, adsorbed methane, and solid solution of methane in crystalline coal substance. While first two phases are well known and can be analyzed by many different techniques, the last one hardly can be studied by methods other than NMR, resulting in inadequate estimations of methane resources.  相似文献   

6.
We calculate the NMR relaxation rate due to quadrupolar coupling of the nucleus to a local, strongly anharmonic phonon mode. As a model potential for a “rattling” motion we consider a square-well potential. We calculate the free phonon Green's function analytically and derive the low and high temperature limits of the NMR relaxation rate. It is shown that the temperature dependence of the NMR relaxation rate possesses a peak in contrast to harmonic phonons but in qualitative agreement with a recent NMR study on KOs2O6. We discuss the influence of phonon renormalization due to electron-phonon interaction.  相似文献   

7.
This paper presents first experiments on using Zeeman polarization-enhanced nuclear quadrupole resonance (NQR) method in detecting explosive substance pentaerythritoltetranitrate (PETN). The NQR signals were detected on nitrogen nuclei at room temperature using a multi-pulse spin-locking sequence after the sample was kept in a very inhomogeneous magnetic field. The dependence of enhancement factor on the time of protons polarization in the magnetic field was studied.  相似文献   

8.
Lattice dynamics in bis-(n-C16H37NH3)2SnCl6, where the hydrocarbon part is analogous to lipid membrane, was investigated by means of 200 MHz 1H nuclear magnetic resonance. As a result, critical fluctuations and molecular dynamics associated with the phase transitions, an order-disorder and a conformational phase transition, were distinguished in a wide temperature range. The dynamical origin of the critical fluctuations, observed in the long-chain compounds but not in the short-chain compounds, by the laboratory frame spin-lattice relaxation measurements, is revealed and discussed in this work.  相似文献   

9.
We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched-exponential function, exp[-(t/T1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin-lattice relaxation rates was well described by (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe-N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.  相似文献   

10.
A Green's function method is used to obtain the spectrum of spin excitations associated with a linear array of magnetic impurities implanted in a ferromagnetic thin film. The equations of motion for the Green's functions of the anisotropic film are written in the framework of the Ising model in a transverse field. The frequencies of localized modes are calculated as a function of the interaction parameters for the exchange coupling between impurity-spin pairs, host-spin pairs, and impurity-host neighbors, as well as the effective field parameter at the impurity sites.  相似文献   

11.
In order to investigate the Ru sublattice magnetic structure, a study of the field dependence of the 99,101Ru nuclear magnetic resonance (NMR) has been carried out on the magnetic superconductor RuSr2GdCu2O8. It is found that the 99,101Ru NMR signal intensity increases significantly with applied magnetic field up to ≈3 kOe, beyond which, it progressively decreases. In addition, a shift of the NMR peaks to lower frequency is observed to begin at ≈1.3 kOe. These behaviors are shown to be accompanied by a field-induced Ru moment spin-flop in the ab planes, and are understood in terms of a previously proposed type-I antiferromagnetic ordering for the Ru sublattice. Based on this model, the inter-plane antiferromagnetic exchange coupling is determined to be ≈1.8 kOe along with a reversible in-plane spin-flop which is characterized by a field ≈0.6 kOe.  相似文献   

12.
Using a picosecond pump and probe time-resolved technique we evidence a single pump pulse photo-induced magnetic ordering in a Mn-doped semiconductor magneto-photonic microcavity operating in the strong coupling regime at room temperature. This nanosecond duration magnetization is attributed to a magnetic ordering of the Mn-impurities mediated through photo-generated holes and enhanced through the confinement. It is distinct from the preceding short lived photo-induced spin orientation of carriers also evidenced by our technique for circularly polarized pump beams. The photo-generated magnetic flux density amounts to a 1 kG for beam fluences of few tens μJ cm−2 and effective Mn concentrations of 5 nm−3; large photo-induced magneto-optic Kerr rotations are also evidenced.  相似文献   

13.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

14.
We propose a self-consistent approximate solution of the disordered Kondo-lattice model (KLM) to get the interconnected electronic and magnetic properties of ‘local-moment’ systems like diluted ferromagnetic semiconductors. Aiming at (A1-xMx)(A1-xMx) compounds, where magnetic (M)(M) and non-magnetic (A)(A) atoms distributed randomly over a crystal lattice, we present a theory which treats the subsystems of itinerant charge carriers and localized magnetic moments in a homologous manner. The coupling between the localized moments due to the itinerant electrons (holes) is treated by a modified RKKY-theory which maps the KLM onto an effective Heisenberg model. The exchange integrals turn out to be functionals of the electronic self-energy guaranteeing self-consistency of our theory. The disordered electronic and magnetic moment systems are both treated by CPA-type methods. We discuss in detail the dependencies of the key-terms such as the long-range and oscillating effective exchange integrals, ‘the local-moment’ magnetization, the electron spin polarization, the Curie temperature as well as the electronic and magnonic quasiparticle densities of states on the concentration x of magnetic ions, the carrier concentration n, the exchange coupling J, and the temperature. The shape and the effective range of the exchange integrals turn out to be strongly x-dependent. The disorder causes anomalies in the spin spectrum especially in the low-dilution regime, which are not observed in the mean field approximation.  相似文献   

15.
The splitting of NMR signal, which is analyzed in terms of the invariant hyperfine coupling between the nuclear spin and the multipolar moments of magnetic ions, gives important information about the multipolar ordering. The NMR splitting of P nuclei is analyzed for the low-temperature phase of PrFe4P12, whose nature has been controversial. Two scenarios are examined: one is a modulation of the hyperfine coupling caused by the antiferro-quadrupole (AFQ) ordering; another is the hyperfine coupling due to a monopole-type ordering.  相似文献   

16.
Nonlinear magneto-optical properties of all-garnet magnetophotonic crystals composed of alternating layers of ferromagnetic Bi3Fe5O12 (BIG) and Sm3Ga5O12 quarter-wavelength layers with a half-wavelength BIG microcavity mode are presented. The samples are grown by rf-magnetron sputtering on non-magnetic GGG substrate. Many-fold enhancement of the magnetization-induced effects in second-harmonic generation (SHG) as compared with linear magneto-optical effects are observed: the SHG magnetic contrast up to 50% and magnetization-induced rotation of the polarization plane of about 90° are measured at the resonance microcavity wavelengh of λ=779 nm.  相似文献   

17.
Nuclear magnetic resonance measurements of the proton spin-lattice relaxation rate R1 for Ti2Ni-type compounds Ti2CoHx (x=0.56, 0.77 and 1.34) have been performed over the temperature range 20-510 K and the resonance frequency range 13-90 MHz. For Ti2CoH0.77 and Ti2CoH1.34 the temperature dependence of R1 is found to exhibit an additional low-temperature peak near 280 K; the amplitude of this peak increases with increasing H content. These results give evidence for the coexistence of at least two types of hydrogen jump motion with different characteristic frequencies. For Ti2CoH0.56 no additional R1 peak has been found. The concentration dependence of the additional peak is discussed in terms of the occupancy of inequivalent interstitial sites by hydrogen atoms.  相似文献   

18.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

19.
The measurements of the proton (NMR) spinlattice relaxation times have been made in a series of ytterbium hydrides, YbH x . Results are reported forx=1.80, 1.95, 2.00 and 2.62 and temperatures 4.2T297K. In the orthorhombic phase (1.80x2.00), the spin-lattice relaxation times are dominated by the hyperfine interaction of protons with conduction electrons and the spin diffusion mechanism. In the cubic phase (x=2.62), the relaxation times are five orders of magnitude shorter than in the orthorhombic one. This is interpreted in terms of the proton coupling with the Yb3+ ion spin fluctuations.  相似文献   

20.
The structural and magnetic properties of Cr1+x(Se1−yTey)2 having a NiAs structure has been studied for (1+x)=1.27, 1.32 and 1.36 and y=0.75 by means of the Korringa-Kohn-Rostoker (KKR) band structure method. The sub-stoichiometry and the disorder on the chalcogenide sub-lattice has been treated by means of the coherent potential approximation (CPA) alloy theory. From total energy calculations a preferential site occupation on the Cr sub-lattice was found together with an antiparallel alignment of the magnetic moments on the two inequivalent Cr layers. The magnetic properties at finite temperature has been studied by means of Monte Carlo simulations on the basis of a classical Heisenberg Hamiltonian and the exchange coupling parameters calculated from first principles. This approach allowed to determine the critical temperature in good agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号