首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This presentation gives a personal review of nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spin-lattice relaxation studies in cuprate superconductors mainly dealing with the YBa2Cu4O8 compound with many examples from the Zürich laboratory. The studies were performed in both the normal and the superconducting state with various NMR isotopes (e.g.,17O,63,65Cu,135,137Ba). The relatively broad signals were mostly obtained by a phase-alternating add-subtract spin-echo technique. We will discuss the general behavior of spin-lattice relaxation in the normal state and the calculation of the dynamic spin including an approach (on the basis of thet-J model) to calculate the relaxation for plane copper, oxygen, and yttrium. An application of the Luttingerliquid model to the relaxation of chain copper in YBa2Cu3O7 and YBa2Cu4O8 is also given. We then will deal with characteristic features of the YBa2Cu4O8 structure: the spin gap, an electronic crossover in the normal state, the single-spin fluid model, and the d-wave pairing.  相似文献   

2.
We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the As site in the normal state of the superconducting compound LaOs4As12. Measurements have been performed on powder sample obtained from high quality single crystals. The temperature dependences of the nuclear spin-lattice relaxation rates, 1/T1, of 75As and 139La nuclei were measured. No scaling between them was found indicating a local character of relaxation processes. The relaxation of 75As nuclei can consistently be understood in terms of antiferromagnetic spin fluctuations, as deduced from the T-dependence of (1/T1T)=C/(Tθ)1/2.  相似文献   

3.
With an original modulation technique, the Gd3+ electron spin-lattice relaxation has been investigated in normal and superconducting states of YBa2Cu3O6+x (123) and YBa2Cu4O8 (124) compounds doped with 1% Gd. In the 123 sample withx = 0.9T c = 90 K), theT 1 behavior within 50 <T< 200 K reveals the [1 ? tanh2(Δ/2kT)]/T dependence typical of a spin gap opening with Δ ≈ 240 K. Below 50 K, the exponential slowing down ofT 1 is limited by the Korringa-like behaviorT 1 T = const); the same Korringa-like law is found in the 123 sample withx = 0.59 (T c = 56 K) within the total 4.2–200 K temperature range. This is interpreted in terms of microscopic separation of the normal and superconducting phases allowing for the electron spin cross-relaxation between them. In the 124 sample (T c = 82 K), the Gd3+ relaxation rate below 60 K is found to obey a power lawT n with an exponentn ≈ 3. Such a behavior (previously reported for nuclear spin relaxation) is indicative of the d-wave superconducting pairing. Additional paramagnetic centers characterized by relatively slow spin-lattice relaxation are found in both 123 and 124 systems. A well-pronounced change in theT 1 temperature dependence atTT* ≈ 180–200 K is observed for these slowly relaxing centers as well as for the conventional, fast-relaxing Gd3+ ions, suggesting microscopic phase separation and a change in the relaxation mechanism due to electronic crossover related with the opening of the spin gap. This hypothesis is supported by some “180 K anomalies” previously reported by other authors.  相似文献   

4.
A room temperature nuclear magnetic resonance force microscope (MRFM), fitted in a 1 tesla electromagnet, has been used to measure the nuclear spin relaxation of 1H in a micron-size (70 ng) crystal of ammonium sulfate. NMR sequences, combining both pulsed and continuous wave radio-frequency fields, have allowed us to measure mechanically T2 and T1, the transverse and longitudinal spin relaxation times. Because two spin species with different T1 values are measured in our 7 μm thick crystal, magnetic resonance imaging of their spatial distribution inside the sample section have been performed. To understand quantitatively the measured signal, we carefully study the influence of spin-lattice relaxation and non-adiabaticity of the continuous-wave sequence on the intensity and time dependence of the detected signal. Received 23 February 2000  相似文献   

5.
A physical mechanism responsible for the relaxation of nuclear spins coupled by the hyperfine interaction to relaxed electron spins in materials with spin ordering is proposed. The rate of such induced nuclear spin relaxation is proportional to the dynamic shift of the nuclear magnetic resonance (NMR) frequency. Therefore, its maximum effect on the NMR signal should be expected in the case of nuclear spin waves existing in the system. Our estimates demonstrate that the induced relaxation can be much more efficient than that occurring due to the Bloch mechanism. Moreover, there is a qualitative difference between the induced and Bloch relaxations. The dynamics of nuclear spin sublattices under conditions of the induced relaxation is reduced to the rotation of m1 and m2 vectors without any changes in their lengths (m 1 2 (t) = m 2 2 (t) = m 0 2 (t)= const). This means that the excitation of NMR signals by the resonant magnetic field does not change the temperature T n of the nuclear spin system. This is a manifestation of the qualitative difference between the induced and Bloch relaxations. Indeed, for the latter, the increase in T n accompanying the saturation of NMR signals is the dominant effect.  相似文献   

6.
We have carried out 99/101Ru and 63/65Cu nuclear magnetic resonance experiments in order to investigate magnetic and electronic properties of the magnetic superconductor RuSr2RECu2O8 (RE=Gd, Eu and Y). The two kinds of 99/101Ru signals were observed in the magnetically ordered state for each system, suggesting a charge segregation of Ru5+ (S=3/2) and Ru4+ (S=1) ions in the RuO2 layers. The internal field at the Cu sites is revealed to be of the order of kilo Oe, indicating weak magnetic interactions between the CuO2 and RuO2 planes. The temperature dependence of nuclear spin-lattice relaxation time T1 of 63Cu in RE=Y shows a ‘spin gap’ like behavior, suggesting the system is under-doped.  相似文献   

7.
Fluorine-19 spin-lattice relaxation of electron-beam-irradiated poly(tetrafluoroethylene) (PTFE) has been investigated in the temperature range from 250 to 315 K. As shown before, in the initial step, radicals are produced by the electron-beam irradiation and chain scission takes place. The concentrations of radicals and chain end groups after irradiation of PTFE strongly depend on the irradiation conditions. Radicals like other paramagnetic species decrease the spin-lattice relaxation times. In addition, decreased polymer chain lengths shift theT 1 minimum to lower temperatures. Tetrafluorosuccinic acid in solution was used as a model system and paramagnetic copper sulphate CuSO4 added to quantify the effect on the relaxation times. The shift of the minima inT 1 versus temperature in PTFE are compared with the chain length determined from high-resolution solid-state nuclear magnetic resonance spectra and with the concentration of paramagnetic species.  相似文献   

8.
The35C1-NQR frequency (VQ), nuclear quadrupole spin-lattice relaxation time (T1Q),1H-NMR second moment (M 2), nuclear magnetic spin-lattice relaxation time (T 1) and spin-lattice relaxation time in rotating frame (T 1p ) were measured for polycrystalline clofibric acid (drug) as a function of temperature. Hindered rotation of two dynamically inequivalent methyl groups and the phenyl ring was detected, the relevant activation energies were determined. The rotations are discussed in detail.  相似文献   

9.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

10.
87Rb and 39K nuclear magnetic resonance (NMR) spectra of RbKSO4 single crystals were measured at room temperature. 87Rb central line has the angular dependences of second-order quadrupolar shifts. From these results, the quadrupole coupling constant and the asymmetry parameter were determined at room temperature. In addition, the spin–lattice relaxation rate, 1/T1, and the spin–spin relaxation rate, 1/T2, were measured as a function of temperature. The values of 1/T1 for the 87Rb and 39K nuclei were found to increase with increasing temperature, and 1/T1 was determined to be proportional to Tn. Therefore, for the 87Rb and 39K nuclei, Raman processes with n=2 are more significantly in nuclear quadrupole relaxation than direct processes.  相似文献   

11.
Lattice dynamics in bis-(n-C16H37NH3)2SnCl6, where the hydrocarbon part is analogous to lipid membrane, was investigated by means of 200 MHz 1H nuclear magnetic resonance. As a result, critical fluctuations and molecular dynamics associated with the phase transitions, an order-disorder and a conformational phase transition, were distinguished in a wide temperature range. The dynamical origin of the critical fluctuations, observed in the long-chain compounds but not in the short-chain compounds, by the laboratory frame spin-lattice relaxation measurements, is revealed and discussed in this work.  相似文献   

12.
Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.  相似文献   

13.
Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.  相似文献   

14.
From the nuclear spin-lattice relaxation of the out-of-layer 19F nuclei in magnetic fields perpendicular to the c-axis the low-frequency component of the autocorrelation function 〈Sz(t)Sz(O)〉 of Ni in ordered K2Mn0.975Ni0.025F4 is found to be substantially reduced relative to the Mn host. The experimental rates vs temperature are in accord with those for relaxation involving two spin excitations calculated with local Green's functions.  相似文献   

15.
The contributions of different mechanisms of nuclear spin-lattice relaxation are experimentally separated for 69Ga and 71Ga nuclei in GaAs crystals (nominally pure and doped with copper and chromium), 23Na nuclei in a nominally pure NaCl crystal, and 27Al nuclei in nominally pure and lightly chromium-doped Al2O3 crystals in the temperature range 80–300 K. The contribution of impurities to spin-lattice relaxation is separated under the condition of additional stationary saturation of the nuclear magnetic resonance (NMR) line in magnetic and electric resonance fields. It is demonstrated that, upon suppression of the impurity mechanism of spin-lattice relaxation, the temperature dependence of the spin-lattice relaxation time T1 for GaAs and NaCl crystals is described within the model of two-phonon Raman processes in the Debye approximation, whereas the temperature dependence of T1 for corundum crystals deviates from the theoretical curve for relaxation due to the spin-phonon interaction.  相似文献   

16.
The magnetic properties of an s?=?1/2 Heisenberg triangular antiferromagnet V15 have been studied by proton nuclear magnetic resonance (NMR) at very low temperature down to 100 mK using a He3-He4 dilution refrigerator. In total spin S T?=?3/2 ground state above 2.7 Tesla, proton spin-lattice relaxation rate (1/T1) shows thermally activated behavior as a function of temperature. On the other hand, a temperature independent behavior of 1/T1 at very low temperatures is observed in frustrated S T?=?1/2 ground state below 2.7 Tesla. Possible origins for the peculiar behavior of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustration.  相似文献   

17.
Measurements of B11 nuclear spin-lattice relaxation as a function of temperature in the itinerant antiferromagnet CrB2 are reported. T-11 shows a divergent behavior near TN and it approaches a constant value well above TN. The results are compared with the different theoretical predictions of Moriya and Ueda obtained either from the RPA or from the renormalized spin fluctuation approach.  相似文献   

18.
Nuclear magnetic resonance of cobalt metal was investigated in the paramagnetic and ferromagnetic states and in the critical region below Tc. The Knight shift and spin lattice relaxation times were measured in the paramagnetic phase in the solid and liquid states from 1578 K to 1825 K. The resonant frequency, spin-lattice and spin-spin relaxation times were measured in the ferromagnetic phase from room temperature to 1385 K. The main part of (T1T)-1 results from fluctuating orbital moments in both phases except near Tc where this process forms the background for critical spin relaxation. The critical exponents for T-11 and for the magnetization in the ferromagnetic state were found to be n' = 0.96 ± 0.07 and β = 0.308 ± 0.012, respectively.  相似文献   

19.
The spin-lattice relaxation times for Nd3+ ions in yttrium-aluminum garnets (YAG) and for Yb3+ ions in CaF2 in the low-temperature range have been measured. For the first system the temperature dependence of the relaxation rate is determined to a great extent by the method of sample preparation. For samples grow by the method of the horizontally oriented crystallization the dependence is described asT 1 ?1 =AT n ,n ? 4.7, which is an evidence of an influence of local structure disordering on the relaxation. The temperature dependence of the relaxation rate in CaF2:Yb is also “anomalous”:T 1 ?1 =AT 3.3. The results are compared with the previous data on the relaxation in similar systems, and with other cases of observation of “anomalous” temperature dependences. Different manifestations of the local crystal defects in spin-lattice relaxation are discussed.  相似文献   

20.
Hg-oxide ceramic high temperature superconductors were studied by199Hg and63,65Cu NMR spectroscopy. Room temperature spectra, spin-spin and spin-lattice relaxation times of samples with different superconducting transition temperatures are presented. A spin-lattice relaxation time ofT 1=35 msec and a spin-spin relaxation time ofT 2=1.6 msec were found for the199Hg NMR. All samples exhibit similar characteristic powder spectra caused by an axially symmetric199Hg spin interaction. The isotropic value and the anisotropy of the tensor relative to solid HgCl2 as a standard substance is estimated. Furthermore, results of63,65Cu NMR measurements at a temperature of 4.2 K which exhibit a typical powder line shape (forI=3/2) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号