首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

2.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

3.
Y3Al5O12:Ce3+, Pr3+ and Y3Al5O12:Ce3+, Tb3+ nano-particles have been synthesized by polymer-assisted sol–gel method. Crystal structure, luminescent properties and energy transfer of the phosphors are analyzed. XRD study of polycrystalline powders shows that all the samples are of YAG phase without impurity. Photoluminescence (PL) emission and excitation spectra illustrate that in YAG:Ce, Pr phosphors, energy transfer occurs mutually between Ce3+ and Pr3+, while in YAG:Ce, Tb systems, only one-way path energy transfer of Tb3+→Ce3+ is observed.  相似文献   

4.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

5.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

6.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

7.
《Journal of luminescence》1987,37(3):123-131
We have investigated the luminescence and absorption spectra of doped and undoped ZrO2-Y2O3 and MgO crystals at room- and low temperatures. The crystals used are partly doped with the transition metals Ni, Co, Cr and the rare earth Pr. The emission spectra were obtained under laser excitation at different wavelengths. The observed optical emission and absorption bands of the MgO crystals doped with Ni, Co and Cr correspond to transitions between spin-orbit split crystal field levels of the transition metals. Luminescence and absorption bands of undoped yttria-stabilized zirconia (YSZ) crystals are due to color centers, absorption bands of the doped YSZ correspond to the well known transitions of the Ni2+, Co2+ and Pr3+ ions, respectively. The emission spectra of the doped YSZ obtained under various laser excitations can be explained by an energy transfer process between the color center and the doping materials. The influence of annealing on the absorption and emission of Pr3+/Pr4+ is investigated.  相似文献   

8.
Six kind CaGa2S4 single crystals doped with different rare earth (RE) elements are grown by the horizontal Bridgman method, and their photoluminescence (PL) spectra are measured in the temperature range from 10 to 300 K. The PL spectra of Ce or Eu doped crystals have broad line shapes due to the phonon assisted 4f-5d transitions. On the other hand, those of Pr3+, Tb3+, Er3+ or Tm3+ doped samples show narrow ones owing to the 4f-4f transitions. The assignments of the electronic levels are made in reference to the reported data of RE 4f multiplets observed in same materials.  相似文献   

9.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

10.
The mixed-compound of Sr1−xCaxTiO3 has shown several compositional phase transformations. Photoluminescence and excitation spectra of the samples with different x and doped with 0.2% Pr3+ were investigated. Changes in the emission spectra were observed in different phases. The blue emission at 491 nm from 3P0 state was found quite strong in the tetragonal phase, and was thermally quenched in the orthorhombic phases. The intensity of the red luminescence from 1D2 increases with increasing content of calcium. The strongest red emission is obtained from CaTiO3:Pr3+. The results are discussed based on the configuration coordinate model and interaction of Pr with the charge transfer exciton state of the Ti complex.  相似文献   

11.
Tb3+-, Pr3+-, or Sm3+-codoped YAG:Ce nanocrystalline phosphors were prepared using a modified polyol process. Possible tunability of Ce3+-related yellow emission in codoped YAG:Ce nanocrystalline systems was investigated. Dual emission of yellow and red spectral component with a single excitation wavelength was observed from YAG:Ce, Pr or YAG:Ce,Sm codoped systems via an energy transfer from Ce3+ and Pr3+ or Sm3+ ion. It was also observed that the energy transfer event in YAG:Ce, Pr nanocrystalline phosphor occurs mutually between Ce3+↔Pr3+, while in YAG:Ce, Sm and YAG:Ce, Tb the energy transfer progresses one way. The detailed pathways for transferring an excitation energy are explained based on the energy level diagrams of respective Ce3+, Pr3+, Sm3+, Tb3+ ion.  相似文献   

12.
Spectral-kinetic study of Pr3+ luminescence has been performed for LiLuF4:Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr3+ 4f 2→4f 5d excitation spectra is shown for LiLuF4:Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF4:Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF4:Pr crystals are considered as the promising luminescent materials possessing the efficient Pr3+3P0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu3+ host ion and Pr3+ impurity is discussed.  相似文献   

13.
Amorphous silica samples doped with 0.1 and 1 mol% of terbium (Tb) were synthesized by the sol–gel method. In addition to the green light associated with 5D47FJ transitions of Tb3+, the sample containing 0.1 mol% also emitted blue light as a result of 5D37FJ transitions during photoluminescence (PL) measurements. As a result of concentration quenching this blue emission was not observed for the samples doped with the higher concentration (1 mol%). However the blue 5D37FJ emission was observed in the 1 mol% doped samples during cathodoluminescence (CL) measurements. Since a rough calculation indicated that the excitation rate in the CL system where the blue emission is observed may be similar to a laser PL system under conditions where the blue emission is not observed, the difference is attributed to the nature of the excitation sources. It is suggested that during the CL excitation incident electrons can reduce non-luminescent Tb4+ ions in the silica, substituting for Si4+ ions, to the excited (Tb3+)? state and that these are responsible for the blue emission, which does not occur during PL excitation.  相似文献   

14.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

15.
Crystal fibers of Ce3+ and Tb3+ singly doped and co-doped CaAl4O7 were grown by the LHPG method. Photoluminescence, excitation spectra and photoconduction were measured. Thermo-stimulated photo-ionization (delocalization) of electrons from the lowest field component of the 5d excited state of Ce3+ was observed in the Ce3+ singly doped sample under excitation at 355 nm. The 5d sublevel was found to locate at 0.3 eV below the conduction band of the host. However, the thermo-stimulated photo-ionization was greatly quenched due to the fast energy transfer from the 5d sublevel to Tb3+ ions in the Ce3+/Tb3+ double doped sample.  相似文献   

16.
A luminescent mechanism was constructed for the broad band emission spectra of the X1 phase of the Y2SiO5:Ce phosphor powder. Four Gaussian peaks fit to the cathodoluminescent (CL) and photoluminescent (PL) spectra were attributed to the two different sites (A1 and A2) of the Ce3+ ion in the host matrix and the difference in orientation of the neighbour ions in the complex crystal structure. Each Ce3+ site gives rise to transitions from the 5d to the two (therefore two peaks) 4f energy levels (2F5/2 and 2F7/2 due to crystal field splitting). Energy transfer from other defect levels in the matrix was also observed.  相似文献   

17.
Long-lasting phosphorescence (LLP) was observed in Pr3+-doped Y3Al5O12 (YAG:Pr) after it was excited by 240 or 290 nm light. The photoluminescence (PL) and LLP properties were studied. It is interesting that the PL and LLP spectra were different. In the PL emission spectra both the emissions of d-f and f-f transitions of Pr3+ ions were observed. However, in the LLP spectra of YAG:Pr the emissions of d-f transition were absent. It is deduced that the differences were due to the energy transfer process between traps and emission centers. On the other hand, significant differences were observed between the two LLP spectra after the sample was excited by 240 and 290 nm lights, respectively. The thermoluminescence (TL) properties were also studied. It is suggested that these studies will be significant for understanding the mechanism of LLP phenomenon.  相似文献   

18.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

19.
0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF4 (Pr:LuLiF4) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr3+ 4f-4f transitions. Intense absorption bands related with the Pr3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137Cs γ-ray.  相似文献   

20.
Double incorporation of Eu3+ and Tb3+ ions into a CaWO4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed.This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号