首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

2.
We report the results of our investigation in CeNi2−xCuxSn2 (x=0, 0.4, 1.0, 1.6 and 2.0), a new pseudoternary series with CaBe2Ge2-type tetragonal structure. Substitution of Cu for Ni leads to a linear increase in the constants a, c and the unit cell volume v. As probed by the low temperature dependence of ac susceptibility χac(T), the Tf temperature, which corresponds to the freezing temperature of the spin-glass clusters, is annihilated above 2.0 K significantly for the samples with x≥1.6. This observation proves conclusively that the Ni-rich samples in the series CeNi2−xCuxSn2 have the advantage of forming the spin-glass-like state.  相似文献   

3.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

4.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

5.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

6.
The structural and magnetic properties of Cr1+x(Se1−yTey)2 having a NiAs structure has been studied for (1+x)=1.27, 1.32 and 1.36 and y=0.75 by means of the Korringa-Kohn-Rostoker (KKR) band structure method. The sub-stoichiometry and the disorder on the chalcogenide sub-lattice has been treated by means of the coherent potential approximation (CPA) alloy theory. From total energy calculations a preferential site occupation on the Cr sub-lattice was found together with an antiparallel alignment of the magnetic moments on the two inequivalent Cr layers. The magnetic properties at finite temperature has been studied by means of Monte Carlo simulations on the basis of a classical Heisenberg Hamiltonian and the exchange coupling parameters calculated from first principles. This approach allowed to determine the critical temperature in good agreement with experiment.  相似文献   

7.
We report electron-spin resonance (ESR) measurements in polycrystalline samples of (Gd1−xYx)2PdSi3. We observe the onset of a broadening of the linewidth and of a decrease of the resonance field at approximately twice the Néel temperature in the paramagnetic state. This characteristic temperature coincides with the electrical resistivity minimum. The high-temperature behavior of the linewidth is governed by a strong bottleneck effect.  相似文献   

8.
Rather old preparation of the compounds ThCo2Ge2 and ThCo2Si2 and their magnetic study in the temperature range 100–570 K, published by Omejec and Ban [Z. Anorg. Allg. Chem. 380 (1971) 111], indicated that both compounds ordered ferrromagnetically below 100 K. In order to verify the old data, polycrystalline samples of ThCo2Ge2 and ThCo2Si2 have been prepared by arc melting and subsequent annealing, and studied by X-ray diffraction at room temperature (RT), by superconducting quantum interference device (SQUID)-magnetization and AC-susceptibility measurements at 2–320 K, and by dc-magnetization measurements in variable magnetic fields up to 120 kOe at 5, 80, and 283 K. The magnetic measurements confirm the ferromagnetic ordering in both compounds, but with totally different Curie temperatures: ≈120(20) K for ThCo2Ge2 and above 320 K for ThCo2Si2. The paramagnetic values of ThCo2Ge2 and the ordering of both compounds are discussed and compared with the old results of Omejec and Ban.  相似文献   

9.
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films.  相似文献   

10.
We report the structure and magnetic properties of Pr1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Pr leads to a linear decrease in the lattice constants and the unit cell volume. The samples with x=0 and x=0.8 have spin reorientation temperature. The results are collected in a phase diagram.  相似文献   

11.
The structure and magnetic properties of La1−xTbxMn2Si2 (0≤x≤0.3) were studied by X-ray powder diffraction and DC magnetization measurements. All the compounds crystallize in ThCr2Si2-type structure. Substitution of Tb for La led to a linear decrease in the lattice constants and the unit-cell volume. A ferromagnetic phase for x≤0.15, and an antiferromagnetic phase for x=0.3 have been observed at about room temperature, whereas the compounds with x=0.2 and 0.25 exhibit a magnetic phase transition from ferromagnetism to antiferromagnetism.  相似文献   

12.
Quasi-irreversible increase in the electrical conductivity is observed in single crystals of LaGa1−xMnxO3. The effect lasts for long time at room temperature and can be erased by heating of the crystal above the phase transition temperature. We explain the observed effects in terms of ionization and local lattice distortion processes.  相似文献   

13.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

14.
The natural cuprate botallackite, Cu2Cl(OH)3, is found to be a new antiferromagnet with Magnetic susceptibility properties under strong field show non-linear M-H properties indicating metamagnetism. The TN and the super-exchange coupling are discussed and compared with its polymorph atacamite and other copper oxides on the basis of their structural parameters.  相似文献   

15.
Visible photoluminescence and its temperature dependence of La2/3Ca1/3MnO3 in the temperature range 138-293 K were measured. It was observed that the main broad band centered at ∼1.77 eV with the shoulders at ∼1.57 and ∼1.90 eV existed in the entire temperature range. It can be well fitted by three Gaussian curves B1, B2 and B3 centered at ∼1.52, ∼1.75 and ∼1.92 eV, respectively. The intensities of the peak B1 and B2 vary as temperature increases. In the entire temperature range, the intensity of B1 increases with increasing temperature, whereas that of B2 decreases. The photoluminescence mechanisms for La2/3Ca1/3MnO3 are presented based on the electronic structures formed by the interactions among spin, charge and lattice, in which B1 was identified with the charge transfer excitation of an electron from the lower Jahn-Teller split eg level of a Mn3+ ion to the eg level of an adjacent Mn4+ ion, B2 is assigned to the transition between the spin up and spin down eg bands separated by Hund's coupling energy EJ and B3 is attributed to the transition, determined by the crystal field energy EC, between a t2g core electron of Mn3+ to the spin up eg bands of Mn4+ by a dipole allowed charge transfer process.  相似文献   

16.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

17.
The magnetic behavior of the FeInxCr2−xSe4 system (with x=0.0, 0.2 and 0.4) has been investigated by magnetic and Mössbauer spectroscopy. Hyperfine parameters indicate that iron is in the Fe2+ oxidation state, with a minor (∼9%) Fe3+ fraction, located at different layers in the structure. Low-field magnetization curves as a function of temperature showed that the antiferromagnetic (AFM) order temperature is TN=208(2) K for FeCr2Se4 and decreases to 174(3) K for FeIn0.4Cr1.6Se4. The effective magnetic moment μeff decreases with increasing In contents, and shows agreement with the expected values from the contribution of Fe2+ (5D) and Cr3+ (4F) electronic states. A second, low-temperature transition is observed at TG∼13 K, which has been assigned to the onset of a glassy state.  相似文献   

18.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

19.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

20.
The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La2−2xSr1+2xMn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50 K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1 mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号