首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the ferroelectric-relaxor behavior of (Ba0.65Sr0.35)(Zr0.35Ti0.65)O3 (BSZT) ceramics in the temperature range from 80 to 380 K. A broad dielectric maximum, which shifts to higher temperature with increasing frequency, signifies the relaxor-type behavior of these ceramics. The value of the relaxation parameter γ∼2 estimated from the linear fit of the modified Curie-Weiss law, indicates the relaxor nature of the BSZT ceramics. The dielectric relaxation rate follows the Vogel-Fulcher relation with TVF=107 K, Ea=0.121 eV, and ν0=6.83×1014 Hz, further supports such relaxor nature. The slim P-E hysteresis loop and ‘butterfly’ shape dc bias field dependence of permittivity at T>Tm (Tm, the temperature of permittivity maximum) clearly signifies the occurrence of nanopolar clusters, which is the typical characteristic of ferroelectric relaxor. At 300 K and 10 kHz, the dielectric constant and loss tan δ are ∼1100 and 0.0015, respectively. The high tunability (∼25%) and figure of merit (∼130) at room temperature show that the BSZT ceramics could be a promising candidate for tunable capacitor applications.  相似文献   

2.
The refractive indices of tetragonal (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) single crystals were measured with a prism coupler and their linear electro-optic (EO) properties were investigated from 20 to 80 °C by the automated scanning Sénarmont system with an ac field. The composition and temperature effect on the EO coefficients were also discussed. It has been found that their EO coefficients are much larger than that of widely used LiNbO3 single crystal and the calculated half-wave voltages are also much lower, which enable the operation at lower voltages and the smaller device dimensions. Since the excellent EO properties are very stable and such high quality single crystals with large-size have been obtained, the PMN-xPT single crystals are a very promising candidate for EO modulation applications. By linking to the polarization-related quadratic EO coefficients, we find that the linear EO properties are related with the spontaneous polarization and dielectric constants.  相似文献   

3.
The domain states and phase transitions in 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals were investigated by studying their relative permittivity under various dc bias at constant heating and cooling rates. The orientation dependence of the bias field effect was revealed by examining the temperature dependence of relative permittivity as a function of crystal orientation (the 〈111〉, 〈011〉 and 〈001〉 directions) and dc bias field. The crystals basically have a macrodomain rhombohedral ferroelectric state in the ferroelectric phase under zero dc bias. External bias field could modulate the domain state and induce a stable macrodomain state in the crystals. Also, it is proposed that the dc bias applied along the 〈001〉 or 〈011〉 direction could induce a tetragonal ferroelectric phase or an orthorhombic ferroelectric phase, respectively, in an intermediate temperature range.  相似文献   

4.
In this article, we report successful preparation of dense [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 (x=0.005-0.100) ceramics by ordinary sintering in air. The dependence of phase structure on doping content of SrO and TiO2 has been determined by the X-ray diffraction technique. It was found that the crystal structure changed from orthorhombic to tetragonal at x≈0.040. Dielectric study revealed that the dielectric relaxor behavior was induced by doping of SrO and TiO2 into (Na0.5K0.5)NbO3. The samples in the composition range from x=0.005 to 0.020 exhibited excellent electrical properties, piezoelectric constant of electromechanical planar and thickness coupling coefficients of kp=26.6-32.5% and kt=39.8-43.8%. The results show that the [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 ceramics are one of the promising lead-free materials for electromechanical transducer applications.  相似文献   

5.
Ba(Sn0.15Ti0.85)O3 (BTS) thin films were grown on Pt(1 1 1)/Ti/SiO2/Si and LaNiO3(LNO)/Pt(1 1 1)/Ti/SiO2/Si substrates by a sol-gel processing technique, respectively. The BTS thin films deposited on annealed Pt(1 1 1)/Ti/SiO2/Si and annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrates exhibited strong (1 1 1) and perfect (1 0 0) orientations, respectively. The BTS thin films grown on un-annealed Pt(1 1 1)/Ti/SiO2/Si substrates showed random orientation with intense (1 1 0) peak, while the films deposited on un-annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrate exhibited random orientation with intense (1 0 0) peak, respectively. The dielectric constant of the BTS films deposited on annealed Pt(1 1 1)/Ti/SiO2/Si, annealed LNO/Pt(1 1 1)/Ti/SiO2/Si, un-annealed Pt(1 1 1)/Ti/SiO2/Si and un-annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrates was 512, 565, 386 and 437, respectively, measured at a frequency of 100 kHz. A high tunability of 49.7% was obtained for the films deposited on annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrate, measured at the frequency of 100 kHz with an applied electric field of 200 kV/cm. The high tunability has been attributed to the (1 0 0) texture of the films and larger grain sizes.  相似文献   

6.
1-3 and 2-2 types Pb(Zr0.53Ti0.47)O3-CoFe2O4 (PZT-CFO) composite films with controllable microstructures, consisted by CFO nanopillar embedded in PZT matrix and PZT-CFO gratings respectively, have been fabricated on Pt/Ti/SiO2/Si substrates by combining lithography technology and pulsed laser deposition. X-ray diffraction confirms that the films are well crystallized under optimized postannealing conditions. Scanning electron microscope reveals that the periodic microstructures can be well controlled. Especially, intrinsic room temperature ferroelectric and ferrimagnetic behaviors are observed simultaneously. The structure-properties relationship is discussed. Our results may provide an alternative method to design and prepare multiferroic composite films with controllable microstructures.  相似文献   

7.
(Pb0.95Ca0.05)(Nb0.02Zr0.80Ti0.20)O3 [PCNZT] thin films were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering with and without a LaNiO3 [LNO] buffer layer. Ca and Nb elements in PZT films enhance the ferroelectric property, LaNiO3 buffer layer improves the crystal quality of the PCNZT thin films. PCNZT thin films possess better ferroelectric property than that of PZT films for Ca and Nb ion substitution, moreover, PCNZT thin films with a LNO buffer layer possess (1 0 0) orientation and good ferroelectric properties with high remnant polarization (Pr = 38.1 μC/cm2), and low coercive field (Ec = 65 kV/cm), which is also better than that of PCNZT thin films without a LNO buffer layer (Pr = 27.9 μC/cm2, Ec = 74 kV/cm). The result shows that enhanced ferroelectric property of PZT films can be obtained by ion substitution and buffer layer.  相似文献   

8.
Sub-coercive field dynamic ferroelectric hysteresis of a morphotropic phase boundary composition of the PZT-PZN ceramic was investigated under influence of the compressive stress. The scaling relation of hysteresis area 〈A〉 against frequency f, field amplitude E0, and stress σ took a form of , which is not different significantly to that of other PZT-PZN compositions with pure tetragonal or rhombohedral structure, as well as to that of soft and hard PZT bulk ceramics. This study suggested that the domain structures, not ceramic compositions, played a key role in controlling dynamic hysteresis behavior of ferroelectric materials.  相似文献   

9.
(Bi0.5Na0.5)0.94Ba0.06TixO1+2x lead-free piezoceramics with x varying from 0.97 to 1.03 were fabricated and characterized in order to investigate the effects of TiO2-nonstoichiometry on the piezoelectric properties and depolarization temperature of (Bi0.5Na0.5)0.94Ba0.06TiO3 composition. X-ray diffraction (XRD) analysis showed that all samples have a single phase of perovskite structure with rhombohedral symmetry. Piezoelectric and dielectric measurements revealed that deficiency of TiO2 leads to an increase in the piezoelectric coefficient (d33), free relative permittivity (), and loss tangent (tan δ) besides an increase in the electromechanical coupling coefficient (kp) within a certain amount, while excess of TiO2 results in a decrease in kp, d33, and , but an increase in tan δ. Depolarization temperature (Td) measurement indicated a decrease and an increase in Td as a result of increasing TiO2 deficiency and TiO2 excess, respectively. This TiO2-nonstoichiometry also induced changes in the remanent polarization (Pr) and coercive field (Ec) of the ceramics.  相似文献   

10.
Electric-field-induced strain behavior of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMNT) crystals with different orientations and compositions was investigated for use as electromechanical actuators. Crystallographically, high strains with low hysteresis were achieved for 〈001〉 oriented rhombohedral crystals (29%≤x≤31%) near a morphotropic phase boundary, rather than 〈110〉 and 〈111〉. Domain instability could explain inferior strain levels and large hysteresis for 〈110〉 and 〈111〉 oriented crystals. Ultrahigh strain levels up to 1.8% could be achieved for 〈001〉 oriented PMNT crystals, being related to an E-field induced phase transition. −2 kV/cm negative E-field can be applied to PMNT ferroelectric material with low hysteresis. High strain with low hysteresis makes PMNT crystals promising candidates for high performance solid-state actuators.  相似文献   

11.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

12.
The influence of grain size on the phase transitions of ferroelectric KNbO3 was studied by micro Raman spectroscopy. It was found that the three transitions observed are not sharp for small particles (∼50 μm), indicating that they do not behave like bulk particles. The transition temperatures depend on the size and all particles show hysteresis. From these experiments we have obtained some evidence that in small particles monodomains of the rhombohedral and orthorhombic phases coexist in a range of temperatures.  相似文献   

13.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

14.
The domain structures in (001) surface of Pb(Mg1/3Nb2/3)O3-40% PbTiO3 single crystals were investigated by piezoresponse force microscopy. Both micron-sized fingerprint 180° and parallel 90° domains were observed in the sample. Different sets of favourable {110} oriented domain patterns were found to meet, intersect or grow through each other. In addition, the piezoelectricity decreases sharply at the domain walls in 180° structures, but does not in the 90° domain structures.  相似文献   

15.
16.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

17.
Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated on Pt/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD), and the dependence of ferroelectric and dielectric properties of the as-deposited BLT thin films on excess Bi content in precursor sols was studied. It is found that the prepared BLT thin film shows the best polarization-electric field, capacitance-voltage and dielectric constant (?r)-frequency characteristics, when the value of excess Bi content in precursor sols is 10%. In detail, its remnant polarization (2Pr) value is 40 μC/cm2, the capacitance tunability is 21% measured at room temperature under conditions of an applied voltage of 8 V and measurement frequency of 10 kHz, and the ?r is 696 at 100 kHz frequency.  相似文献   

18.
The co-existence of ferroelectric and ferromagnetic properties at room temperature is very rarely observed. We have been successful in converting ferroelectric PbTiO3 into a magnetoelectric material by partly substituting Fe at the Ti site. The Pb(FexTi1−x)O3 system exhibits ferroelectric and ferromagnetic ordering at room temperature. Even more remarkably, our results demonstrate a coupling between the two order parameters. Hence it could be a futuristic material to provide cost effective and simple path for designing novel electromagnetic devices.  相似文献   

19.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

20.
We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM?0.09°). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号