首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spin-lattice relaxation rates of 1H and 39K nuclei in KHSeO4 crystals were studied in the temperature range 160-400 K. The spin-lattice relaxation recovery of 1H nucleus in this crystal can be represented with a single exponential function, and the relaxation T1−1 curve of 1H can be represented with the Bloembergen-Purcell-Pound (BPP) function. The relaxation process of 39K with dominant quadrupole relaxation can be described by a linear combination of two exponential functions. T1−1 for the 39K nucleus was found to have a very strong temperature dependence, T1−1=βT7. Rapid variations in relaxation rates are associated with critical fluctuations in the electronic spin system. The T7 temperature dependence of the Raman relaxation rate is shown here to be due to phonon-magnon coupling.  相似文献   

2.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

3.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

4.
The proton spin-lattice relaxation rates in [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals grown using the slow evaporation method were investigated over the temperature range 120-400 K. It was found that the relaxation processes of 1H for all the [N(CH3)4]2BCl4 crystals can be described with single exponential functions. The changes in the 1H relaxation behavior in the neighborhood of the phase transition temperatures are used to detect changes in the state of internal motion. From the 1H spin-lattice relaxation rate measurements for [N(CH3)4]2BCl4 crystals, the activation energies were calculated for each phase. The large values of the activation energies indicate that the N(CH3)4 groups are significantly affected during the transitions. Although these [N(CH3)4]2BCl4 crystals all belong to the group of A2BX4-type crystals, their 1H spin-lattice relaxation rates have different temperature dependences and indicate the occurrence of different molecular motions within the crystals. We additionally show for the first time that the differences in 1H spin-lattice relaxation rates among the [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals arise from differences in the electron structures of the metal ions within the series.  相似文献   

5.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

6.
The 133Cs spin-lattice relaxation time in a CsHSO4 single crystal was measured in the temperature range from 300 to 450 K. The changes in the 133Cs spin-lattice relaxation rate near Tc1 (=333 K) and Tc2 (=415 K) correspond to phase transitions in the crystal. The small change in the spin-lattice relaxation time across the phase transition from II to III is due to the fact that during the phase transition, the crystal lattice does not change very much; thus, this transition is a second-order phase transition. The abrupt change of T1 around Tc2 (II-I phase transition) is due to a structural phase transition from the monoclinic to the tetragonal phase; this transition is a first-order transition. The temperature dependences of the relaxation rates in phases I, II, and III are indicative of a single-phonon process and can be represented by T1−1=A+BT. In addition, from the stress-strain hysteresis loop and the 133Cs nuclear magnetic resonance, we know that the CsHSO4 crystal has ferroelastic characteristics in phases II and III.  相似文献   

7.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

8.
We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the As site in the normal state of the superconducting compound LaOs4As12. Measurements have been performed on powder sample obtained from high quality single crystals. The temperature dependences of the nuclear spin-lattice relaxation rates, 1/T1, of 75As and 139La nuclei were measured. No scaling between them was found indicating a local character of relaxation processes. The relaxation of 75As nuclei can consistently be understood in terms of antiferromagnetic spin fluctuations, as deduced from the T-dependence of (1/T1T)=C/(Tθ)1/2.  相似文献   

9.
CsZnCl3 single crystals were grown by the slow evaporation method, and the spin-lattice relaxation rates and resonance lines of the 133Cs nuclei in the resulting crystals were investigated using FT NMR spectrometry. The temperature dependence of the relaxation rate of the 133Cs nuclei in the CsZnCl3 crystals was found to be continuous near TC (=366 K), and was not affected by this phase transition. Our results for CsZnCl3 are compared with those obtained previously for other CsBCl3 (B=Mn, Cu, and Cd) perovskite crystals. The Cs relaxation time of CsCdCl3 is longer than that of CsMnCl3. The differences between the atomic weights of Mn, Cu, Zn, and Cd are responsible for the differences between the spin-lattice relaxation times of these single crystals. The influence of paramagnetic ions is also important in these crystals. The differences between the spin-lattice relaxation times of these crystals could also be due to differences between the electron structures of their metal ions, in particular the structures of the d electrons.  相似文献   

10.
The molecular susceptibility and paramagnetic shift of [N(CH3)4]2CoCl4 single crystals were measured, and from these experimental results we obtained the transferred hyperfine interaction, Hhf, due to the transfer of spin density from Co2+ ions to [N(CH3)4]+ ions. The transferred hyperfine interaction can be expressed as a linear equation, with Hhf increasing with increasing temperature. The remarkable change in Hhf near Tc5 (=192 K) corresponds to a phase transition. The proton spin-lattice relaxation times of [N(CH3)4]2CoCl4 single crystals were also investigated, and it was found that the relaxation process can be described by a single exponential function. The variation of the relaxation time with temperature undergoes a remarkable change near Tc5, confirming the presence of a phase transition at that temperature. From the above results, we conclude that the increase in Hhf with increasing temperature is large enough to allow the transfer of spin density between Co2+ ions and the nuclear spins of the nonmagnetic [N(CH3)4]+ ions in the lattice, and thus the increase in the relaxation time with temperature is attributed to an increase in the transferred hyperfine field.  相似文献   

11.
Measurements of the temperature and frequency dependence of the proton laboratory and dipolar frame spin-lattice relaxation rates in powdered TlH2AsO4 demonstrate that the 75As quadrupole resonance frequency changes from vQ ≈ 38 MHz at T ?Tc to vQ 〈 10 MHz at TTc. The structural phase transition at Tc = 251 K is thus connected with a disordering of the protons in the O–H … O bonds surrounding the AsO4 groups.  相似文献   

12.
Crystal structure of the 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4], has been determined at 240 K by X-ray diffraction as monoclinic, space group, P21/n, Z=8. Differential scanning calorimetry and dilatometric studies indicate the presence of two reversible phase transitions of first order type, at 335/339 and 233/289 K (cooling/heating) with ΔS=0.68 and 2.2 J mol−1 K−1, respectively. Crystal dynamics is discussed on the basis of the temperature dependence of the 1H NMR spin-lattice relaxation time T1 and infrared spectroscopic studies. The low temperature phase transition at 233 K of an order-disorder type is interpreted in terms of a change in the motional state of the 4-methylpyridinium cations. The phase transition at 335 K, probably of a displacive type, is characterised by a complex mechanism involving the dynamics of both the cationic and anionic sublattice. The 1H NMR studies show that the low temperature phase III is characterised only by the dynamics of the CH3 groups.  相似文献   

13.
Measurements of the spin-lattice relaxation time, NMR absorption line and magnetization have been carried out on the Tl3H(SO4)2 crystal below 50 K. The anomaly at around 7 K was: (1) the spin-lattice relaxation times of 1H and 205Tl nuclei increase steeply with decreasing temperature below 7 K, (2) the NMR absorption lines below 7 K shift to the high-magnetic field side in comparison with that above 7 K, and (3) the 1H NMR line width exhibits a drastic increase of the line width with decreasing temperature below 7 K. These results indicate that the magnetic dipole fluctuation of the proton changes at 7 K. On the other hand, there are no remarkable anomalies of magnetic susceptibility at around 7 K. From these results it is deduced that the anomaly at around 7 K is caused by the change in quantum mechanical process of the proton from proton tunneling to zero-point vibration of hydrogen in the hydrogen bond with the decrease of temperature.  相似文献   

14.
EPR spectra of SO-3 ion-radical in X-ray irradiated CsLiSO4 single crystals were used for the study of the ferroelastic phase transition at Tc = 203.0 K. The splitting (ΔH) of the SO3 line in the low-temperature ferroelastic phase has been interpreted as proportional to the square of the order parameter. The splitting shows the temperature dependence ΔH ∞ (Tc ? T) 1.01± 0.01  相似文献   

15.
Proton spin-lattice relaxation times T1 and T have been measured in NH4IO4 between 150 K and 50 K. The relaxation in the rotating frame was strongly nonexponential between 70 K and 53 K, which supports the tunneling assisted relaxation model of NH+4 in the rotating frame. The tunneling frequency was determined to be Λ0 =1.5 MHz.  相似文献   

16.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

17.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

18.
The electron spin resonance of VO2+ is studied in single crystals of Cs2M″ (SeO4)2·6H2O (M″ = Zn, Co) from 290 to 77 K at ~ 9.45 GHz. The line broadening of VO2+ spectra on cooling the Cs2Co(SeO4)2·6H2O crystal is explained on the basis of host spin-lattice relaxation narrowing. T1 for Co2+ is estimated to be ≈ 1.7 × 10?12 sec. at 290 K.  相似文献   

19.
Hydrogen behavior in the α phase of Mg2NiHx system was studied by 1H NMR. 1H NMR spectra and spin-lattice relaxation times, T1 and T, of Mg2NiH0.22 were measured in the temperature range between 100 and 480 K. The drastic change in the linewidth is observed between 170 and 340 K, and 1H rigid lattice is observed below 170 K, from which it is deduced that the hydrogen atoms are randomly distributed in α-Mg2NiHx. The relaxation mechanism for t1 is the paramagnetic one, while the T value is determined partially by hydrogen diffusion. The hydrogen diffusion rate has been determined from the linewidth and the T value. The paramagnetic relaxations observed in T1 and T have been discussed relating to the hydrogen diffusion.  相似文献   

20.
From the nuclear spin-lattice relaxation of the out-of-layer 19F nuclei in magnetic fields perpendicular to the c-axis the low-frequency component of the autocorrelation function 〈Sz(t)Sz(O)〉 of Ni in ordered K2Mn0.975Ni0.025F4 is found to be substantially reduced relative to the Mn host. The experimental rates vs temperature are in accord with those for relaxation involving two spin excitations calculated with local Green's functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号