首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the model of an infinite one-dimensional periodic layered structure, we consider the possibilities of controlling dispersion properties and transmission spectra of hybrid optical components consisting of photonic band-gap structures filled with a resonant gas. It is shown that the combination of resonance-enhanced gas dispersion with the dispersion of a photonic band-gap structure may give rise to new features in the dispersion and transmission of hybrid spectral elements. These effects can be employed to create narrowband filters and ultrarefractive prisms with controllable parameters.  相似文献   

2.
We report spatial domain measurements of the damping of surface-plasmon excitations in metal films with periodic nanohole arrays. The measurements reveal a short coherent propagation length of a few microm inside nanohole arrays, consistent with delays of about 10 fs in ultrafast transmission experiments. This implies that the transmission spectra of the entire plasmonic band-gap structure are homogeneously broadened by radiative damping of surface-plasmon excitations. We show that a Rayleigh-like scattering of surface plasmons by the periodic hole array is the microscopic origin of this damping, allowing the reradiation rate to be controlled.  相似文献   

3.
张振方  郁殿龙  刘江伟  温激鸿 《物理学报》2018,67(7):74301-074301
声子晶体管路的带隙特性,可以实现管路系统在特定频率下的噪声控制.利用二维模态匹配法推导出单个内插扩张室元胞的传递矩阵,结合Bloch定理,得到声子晶体管路的能带结构计算方法;验证了二维方法在计算能带结构时的准确性.研究发现,内插扩张室声子晶体管路存在布拉格带隙和局域共振带隙.进一步研究了晶格常数以及内插管长度对能带结构的影响,结果表明,晶格常数主要控制布拉格带隙,而内插管长度对局域共振带隙有较大的影响,并研究了两种参数变化下的带隙耦合.研究结果可以为管路降噪设计提供新的思路.  相似文献   

4.
Luminescence spectroscopy has been used to characterize MgO films prepared by rf-sputtering. A clear correlation is found between the appearance of an emission peak centered at approximately 460 nm and the detection of ferromagnetic ordering in the samples. We suggest that cationic vacancies are responsible for the blue-light emission by introducing p states into the electronic band-gap. In accordance with this, our results strongly indicate that cationic vacancies are at the heart of the appearance of long-range magnetic ordering in MgO films.  相似文献   

5.
A photonic band structure of colloidal crystals of silica spheres is analytically determined by a band model with three fitting parameters: the sphere size, the effective refractive index, and the band-gap. Optical properties of the crystals annealed at various temperatures were characterized by a procedure similar to X-ray diffraction technique, and the width of photonic band-gap measured from the transmission spectra experimentally servers as an additional check on the validation of the model. The photonic band structures defined by the band-gap, the refractive index, and the Brillouin zone are obviously superior to the use of the Bragg's expression involving simple zone folding.  相似文献   

6.
We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal Mr holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed. The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.  相似文献   

7.
The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency. In this paper, by employing the equation governing the nonlinear light propagations in photorefractive crystals, we study the photonic band-gap structures, Bloch modes, and light transmission properties of optically induced planar waveguide arrays. The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail. Then the influence of the parameters of planar waveguide arrays on the band-gaps structures, Bloch modes, and linear light transmissions is analyzed. It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures. And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes. Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions. Furthermore, the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle. Additionally, with the increase of the intensity of the array writing beams, the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect. Supported by the Youth for Northwestern Polytechnical University (NPU) Teachers Scientific and Technological Innovation Foundation, the NPU Foundation for Fundamental Research, and the Doctorate Foundation of NPU (Grant No. CX200514)  相似文献   

8.
We theoretically and experimentally reveal that the large resonant optical transmission (ROT) can be realized through a one-dimensional photonic crystal adjacent to a thin metal film, at a frequency in the original band-gap of the photonic crystal (PC). The influence of periodic number of PC and the thickness of the adjacent metal on the transmission frequency and intensity is studied in detail. An optimum design is given to reach the maximum transmission efficiency, meanwhile a mechanism underlining the ROT phenomenon is proposed. An effective admittance-matching theory is proposed to understand this effect and quantitatively determine the operating frequency, which matches very well with the simulated and measured results. The effects might be very useful to realize some optical filters and sensor devices since the structure is easy for mass production and is matured technically to be prepared in industry.  相似文献   

9.
Propagation of spin waves (SWs) through a periodic multilayered magnetic structure is analyzed. It is assumed that the structure consists of ferromagnetic layers having the same thickness but different magnetizations. The wave spectrum obtained contains forbidden zones (stop bands) in which wave propagation is prohibited. Introduction into the structure of the ferromagnetic layer with a different thickness breaks the structural symmetry and leads to a localization of the SW mode with the frequency lying in the stop band. Reflection of the wave by the structure of the finite length and transmission of the wave through the structure are also investigated. Numerical calculations of the wave dispersion and the transmission coefficients for symmetrical periodic structures as well as the structures with a defect are presented. Drawing an analogy from photonic crystals known in optics, such magnetic structures can be called one-dimensional (1-D) magnonic crystals (MCs). The possibilities of existence of the 2-D MCs are also discussed.  相似文献   

10.
The band-gap properties of non-uniform periodic beams are analyzed using numerical and experimental methods. The flexural wave equations are established based on the Euler–Bernoulli and Timoshenko beam theories. The beams with periodically variable cross sections are investigated. The transfer matrix method is used to explore the dynamic behaviors of the periodic beams, that is, the natural frequencies of the finite periodic beams with different cross-section ratios between the adjacent sub-cells and the band-gaps of the infinite periodic beams based on the Bloch theory. The validity and accuracy of the band-gaps acquired by the present method are verified by comparing the results with those obtained from the finite element method and the vibration experiments. The effects of the different lengths of adjacent sub-cells on the band-gap properties are then investigated. The research results and conclusions should be useful in the study of vibration control applications.  相似文献   

11.
In this paper a theoretical study of the band structure of collective modes of binary ferromagnetic systems formed by a submicrometric periodic array of cylindrical cobalt nanodots partially or completely embedded into a permalloy ferromagnetic film is performed. The binary ferromagnetic systems studied are two-dimensional periodic, but they can be regarded as three-dimensional, since the magnetization is non uniform also along the z direction due to the contrast between the saturation magnetizations of the two ferromagnetic materials along the thickness. The dynamical matrix method, a finite-difference micromagnetic approach, formulated for studying the dynamics in one-component periodic ferromagnetic systems is generalized to ferromagnetic systems composed by F ferromagnetic materials. It is then applied to investigate the spin dynamics in four periodic binary ferromagnetic systems differing each other for the volume of cobalt dots and for the relative position of cobalt dots within the primitive cell. The dispersion curves of the most representative frequency modes are calculated for each system for an in-plane applied magnetic field perpendicular to the Bloch wave vector. The dependence of the dispersion curves on the cobalt quantity and position is discussed in terms of distribution of effective “surface magnetic charges” at the interface between the two ferromagnetic materials. The metamaterial properties in the propagative regime are also studied (1) by introducing an effective magnetization and effective “surface magnetic charges” (2) by describing the metamaterial wave dispersion of the most representative mode in each system within an effective medium approximation and in the dipole-exchange regime. It is also shown that the interchange between cobalt and permalloy does not necessarily lead to an interchange of the corresponding mode dispersion. Analogously to the case of electromagnetic waves in two-dimensional photonic crystals, the degree of localization of the localized collective modes is expressed in terms of an energy concentration factor.  相似文献   

12.
We investigate the electron transmission through a structure of serial mesoscopic metallic rings coupled to two external leads. A set of analytical expressions based on the quantum waveguide transport and the transfer matrix method are derived and used to discuss the effects of geometric configurations on transmission probabilities. It is found that in the contact ring case the existence of an applied magnetic flux is necessary to create transmission gaps, while in the non-contact ring case transmission gaps always appear irrespective of whether there is an applied magnetic flux or not. The transmissions for periodic rings with a defect ring and periodic rings built by two sorts of rings are also briefly studied. It is also found that the transmission periodicity with wave vector must be ensured by the commensurability of two characteristic lengths, i.e., of the half perimeter of a ring and the connecting wire between two adjacent rings. The special points of wave vector and magnetic flux which give rise to the transmission resonance and antiresonance are analyzed in detail.  相似文献   

13.
Changes in structural, electrical and electronic properties of zinc oxide (ZnO) due to Al doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. A periodic supercell of 128 atoms has been exploited throughout the study. The atomic parameters for Zn atom were obtained by reproducing the main properties of ZnO crystal as well as the first three ionization potentials of Zn atom. The perturbation imposed by Al atom incorporation leads to the atomic relaxation, which is computed and discussed in detail. A novel effect of electron density redistribution between different atomic orbitals within the same atom has been found. This phenomenon influences atomic rearrangement near Al impurity. The Al doping generates a free electron in the conduction band, which can be considered as a large radius electron polaron increasing the n-type electrical conductivity in the crystal in agreement with the known experimental data. The obtained small increase in the band-gap width due to the impurity incorporation resolves existing experimental debates on this point.  相似文献   

14.
刘德  张红梅  贾秀敏 《物理学报》2011,60(1):17506-017506
研究了两端具有铁磁接触的对称抛物势阱磁性隧道结(F/SPW/F)中自旋相关的隧穿概率和隧穿磁电阻,讨论了量子尺寸效应和Rashba 自旋轨道耦合作用对自旋极化输运特性的影响.研究结果表明:隧穿概率和隧穿磁电阻随抛物势阱宽度的增加发生周期性的振荡.抛物势阱深度的增加减小了隧穿概率和隧穿磁电阻的振荡频率.Rashba 自旋轨道耦合强度的增加加大了隧穿概率和隧穿磁电阻的振荡频率.隧穿概率和隧穿磁电阻的振幅和峰谷比强烈依赖于两铁磁电极中磁化方向的夹角. 关键词: 磁性隧道结 Rashba 自旋轨道耦合 隧穿概率 隧穿磁电阻  相似文献   

15.
《Physics letters. A》2006,352(6):550-553
The relation between the structural characteristics and the transmission properties of amorphous photonic material (APM) is studied. The simulation and the experimental results show that the long-range order of the basic lattice in the APM has little relation with the optical properties of the photonic material. In contrast, the condition of the unit cell of the APM has a close relation to the transmission property of the APMs. The band-gap and the band properties change with the shrinking of the unit cells. This suggests a procedure for band-gap engineering of amorphous photonic materials.  相似文献   

16.
Quasi-one-dimensional comb-like periodic and aperiodic structures composed of positive index materials branch resonators and negative index materials backbone waveguide are physically fabricated by using transmission line approach. It is theoretically shown that the structures possess a non-Bragg band-gap which is invariant with a change of scale length and robust against disorder. The gap edges are determined by zero average permittivity of the branch and the backbone and zero permeability of the backbone materials, respectively. The transmission properties of the structures are investigated by changing the (average) resonator size dBand the resonator spacing dArespectively. The experimental results agree well with the theoretical predictions and numerical simulations, which demonstrate the independence of the special gap on the scaling and disorder in the structures.  相似文献   

17.
The uniaxial in-plane and out-of-plane anisotropies of [Co/SiO2] × 10 multilayers have been studied by ferromagnetic resonance, magnetometry and transmission electron microscopy. The surface and volume anisotropy constants are in the range of values typical for multilayers with Co and transition metals of the iron group. The influence of the intermixed Co-SiO2 region is discussed.  相似文献   

18.
The model of the Datta-Das spin field effect transistor [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665] is extended in several respects: (1) the Rashba effect and Dresselhaus effect coexist; (2) the incoming and outgoing leads are both ferromagnetic; (3) the interfacial scattering and band mismatch are taken into account. By using the Griffith boundary conditions, the transmission coefficients and, thus, the Landauer-Büttiker conductance are obtained analytically. The transmission probability and conductance of the spin field effect transistor are studied in detail.  相似文献   

19.
A model for the motion of a single ferromagnetic domain is studied numerically and analytically. A single strip in two dimensions and pinned at two inhomogeneities is considered. We suppose two stable configurations (positively or negatively curved with pinned ends) due to the action of a bistable potential. Further, it is assumed that the domain is driven externally by periodic and noisy magnetic fields. The noise makes the domain able to flip between the two configurations. The small temporally periodic fields synchronize these flippings and the phenomenon of stochastic resonance is observed. The signal to noise ratio of the output is investigated and shows a maximum for a nonvanishing intensity of the applied noise. Its dependency on the stiffness of the domain is studied. Received 14 May 1999 and Received in final form 14 October 1999  相似文献   

20.
Suzhi Wu  Yu-qiang Ma 《Physics letters. A》2008,372(13):2326-2331
Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号