首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

2.
Magnetic properties of granular (Co40Fe40B20)x(SiO2)1−x   thin films (x=0.37-0.53x=0.37-0.53) have been studied by ferromagnetic resonance (FMR) technique. Samples have been prepared by ion-beam deposition of Co–Fe–B particles and SiO2 on sitall ceramic substrate. The FMR measurements have been done for different orientations of DC magnetic field with respect to the sample plane. It was found that the deduced value of effective magnetization from FMR data of the thin granular film is reduced by the volume-filling factor of the bulk saturation magnetization. The overall magnetization changes from 152 to 515 G depending on the ratio of the magnetic nanoparticles in the SiO2 matrix. From angular measurements an induced in-plane uniaxial anisotropy has been obtained due to the preparation of the film conditions as well.  相似文献   

3.
Room-temperature ferromagnetism (RTFM) is investigated in the polycrystalline bulk (ZnO)0.98(MnO2)0.02 samples prepared by a modified solid-state sintering route. Successive sintering of a sample was carried out in air at different temperatures in the range of 400-1000 °C. The study of magnetization and phase-investigation in the sample was carried out after each sintering step. The progressive suppression of impurities and the consequent reduction in RTFM is clearly observed in the samples with increase in the sintering temperature up to 800 °C. The subsequent successive sintering of the (ZnO)0.98(MnO2)0.02 sample up to 1000 °C yields fully paramagnetic sample exhibiting wurtzite structure. The studies support the conjecture (Kundaliya et al., Nat. Mater. 3 (2004) 709 [18]) that RTFM in this system has an origin related to a randomly distributed impurity phase produced by local dissolution of ZnO and MnO2.  相似文献   

4.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

5.
Light-induced changes of the hysteresis loops of magnetization and microwave absorption are investigated in low-doped La1−xCaxMnO3 (x<0.2) thin films. The width of the hysteresis loops decreases clearly under illumination with visible or near-infrared light at temperatures below 50 K. The microwave conductivity has a minimum value at magnetic fields corresponding to the magnetization reversal and is shifted towards weaker fields under illumination. These effects show complex nonexponential time evolution and dependence on strength of the magnetic field. The results can be explained by assuming that small ferromagnetic metallic regions exist within the insulating ferromagnetic phase of the sample, and that these regions are expanded by optically induced charge transfer between Jahn–Teller split eg states of neighboring Mn3+ ions. Decrease of the Mn3+ XPS core level spectrum is observed in the samples under illumination with a HeNe laser.  相似文献   

6.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

7.
We report electron-spin resonance (ESR) measurements in polycrystalline samples of (Gd1−xYx)2PdSi3. We observe the onset of a broadening of the linewidth and of a decrease of the resonance field at approximately twice the Néel temperature in the paramagnetic state. This characteristic temperature coincides with the electrical resistivity minimum. The high-temperature behavior of the linewidth is governed by a strong bottleneck effect.  相似文献   

8.
Glass-ceramics have been derived from 4.5MgO(45−x)CaO34SiO216P2O50.5CaF2xFe2O3 (x=5, 10, 15, 20 wt%) glasses by heat treatment. Room temperature electron paramagnetic resonance (EPR) spectra and temperature-dependent magnetic susceptibility (χ) of the glass-ceramics have been obtained. The EPR absorption line centered at g≈4.3 disappeared at higher concentrations of iron oxide. The intensity and line width of the EPR absorption line centered at g≈2.1 increased as the iron oxide concentration was increased. Temperature-dependent magnetization of samples with low iron oxide content revealed ferrimagnetic as well as paramagnetic contributions. Information about the structural changes involving iron ions, their valence state and the type of magnetic interactions between the Fe ions as a function of composition was obtained using EPR and χ studies.  相似文献   

9.
The effects of A-site average cation size 〈rA〉 and anti-site defects on Curie temperature (TC) and room-temperature magnetoresistance (MR) in (Sr2−xBax)FeMoO6 (x=0, 0.4 and 1.6) have been investigated. By Ba doping, not only the room-temperature MR but also the TC have been enhanced. The larger MR in the Ba-doped samples compared with the prototype Sr2FeMoO6 is associated with the lower saturation field. The optimization of TC and MR in (Sr1.6Ba0.4)FeMoO6 other than in the reported (Sr0.4Ba1.6)FeMoO6 can be understood according to the two competing effects: anti-site defects and chemical pressure.  相似文献   

10.
In this paper we report a systematic study of Mn-site substitution by M=Co, Cr and Al in La0.85Ag0.15MnO3 series to understand the magnetic interactions between Mn and other transition metals. The long-range ferromagnetic (FM) ordering of the parent compound was significantly affected by Mn-site substitution. The measured magnetic properties of Co-doped samples have been explained on the basis of FM interactions in Mn3+-O-Mn4+, Co2+-O-Mn4+, Co3+-O-Mn4+ networks and simultaneous antiferromagnetic (AFM) interactions in Mn4+-O-Mn4+, Co2+-O-Mn3+ networks. The magnetic properties of Cr-doped compounds could be understood on the basis of double exchange FM interactions in Mn3+-O2−-Mn4+ networks and competing AFM in Cr3+-O-Mn4+, Mn4+-O-Mn4+, Cr3+-O-Mn3+ networks. However, it is found that the doping of Al ions play a role of magnetic dilution, without contributing any other competing magnetic interaction. The field variations of magnetization of all the above three series could be analysed by fitting to Brillouin function model and the effective spin contribution for FM has been determined. The measured saturation magnetization has been explained quantitatively.  相似文献   

11.
The ESR g-factor, linewidth and spin susceptibility of (TMTSF)2PF6 are each found to have a distinct temperature dependence. The anisotropy of g and of the linewidth for static magnetic fields in the plane perpendicular to the highly conducting axis suggest that spin-phonon scattering is the dominant relaxation mechanism. The metal-insulator transition at 19 K is reflected particularly clearly in the magnetic properties.  相似文献   

12.
Itinerant electron metamagnetism in Dy(Co1-xSix)2 compounds was studied in the light of a recent theoretical model based on magnetovolume effect and spin fluctuations. The nature of the magnetic transition in these compounds was analyzed within the framework of this model. The magnetocaloric effect in these compounds has been calculated and correlated with the strength of itinerant electron metamagnetism. The domain wall pinning effect was found to be dominant at low temperatures.  相似文献   

13.
The polarized absorption spectra of trans-NiCl2(H2O)4 complex were measured by Bussière et al. [Coord. Chem. Rev. 219-221 (2001) 509-543] at low-temperature. Using the experimental spectroscopic data, semiempirical calculations of the crystal-field levels of trans-NiCl2(H2O)4 chromophore are carried out, based on the Racah theory. We used idealized D4h point group symmetry to analyse the observed crystalline-field splitting of this chromophore. As a result, Racah and crystal-field parameters have been reliably obtained. A good agreement between the theoretical and experimental energy levels of trans-NiCl2(H2O)4 complex has been obtained. The region of 3T1g/1Eg(Oh) bands is of great interest and it is useful to use the tetragonal symmetry to understand the features of this spectral region.  相似文献   

14.
The optical absorption spectrum, zero-field splitting (ZFS) and EPR g factor of LiNbO3:Ni2+ are explained uniformly on the basis of complete energy matrix diagonalization procedure (CDP) and Zhao's self-consistent field (SCF) d-orbit of free Ni2+ ions. The agreement between the calculated results and the experimental data shows quantitatively that impurities Ni2+ replace the Nb5+ rather than Li+ sites in LiNbO3:Ni2+.  相似文献   

15.
We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Nd0.85Na0.15MnO3 prepared by sol–gel method. A ferromagnetic–paramagnetic (FM–PM) transition is observed around 110 K, which is not accompanied by a metal–insulator transition. The sample displays the complete PM state associated with the ESR spectra fitted by single Lorentzian line shape above 130 K. Below 130 K, ESR spectra become distorted and then linewidth increases rapidly, where short-range magnetic order develops and coexists with PM phase due to the inhomogeneous magnetic state. In addition, the large difference between the activation energies obtained from the resistivity and ESR parameters (peak-to-peak linewidth and line intensity) at the frame of adiabatic small polaron hopping model is pointed out for Nd0.85Na0.15MnO3.  相似文献   

16.
A theoretical method for investigating the inter-relation between the electronic and molecular structures of 3d^3 configuration ions in a tetragonal ligand field is established on the basis of the 120 × 120 complete energy matrices. Using this method, the local structure parameters of two tetragonal Cr^3+ centers in the NH4 Cl:Cr^3+ system are determined, Furthermore, the relations between the molecular symmetry and the ligand field symmetry are discussed.  相似文献   

17.
In order to investigate the pressure effect on the magnetism in the layered cobaltites, positive muon spin rotation and relaxation μ+SR experiments have been carried out up to 1.3 GPa using c-aligned polycrystalline samples of [Ca2CoO3]0.62[CoO2] and [Ca2Co4/3Cu2/3O4]0.62[CoO2]. A transverse field μ+SR experiment indicates that the transition temperature to an incommensurate spin density wave IC-SDW state is independent of hydrostatic pressure up to 1.3 GPa for the both compounds. Furthermore, there are no changes in the spontanious muon precession frequency in zero field at 5 K even under 1.3 GPa. These results strongly suggest that the IC-SDW exists not in the rocksalt-type block ([Ca2CoO3] and/or [Ca2Co4/3Cu2/3O4]) but in the CoO2 plane.  相似文献   

18.
Electron spin resonance and electron–proton double resonance (Overhauser shift method) are used for the comparison of proton radiation damaged and as-grown (fluoranthene)2PF6 single crystals. Chemical modification and various consequences of the nonuniform distribution of radiation induced defects in this quasi-one-dimensional organic conductor with defect dependent Peierls transition are worked out.  相似文献   

19.
The effect of Ba(La)TiO3 doping on the structure and magnetotransport properties of La2/3Sr1/3MnO3(LSMO)/xBa(La)TiO3 (x=0.0, 1.0, 5.0 mol%) have been investigated. The X-ray diffraction patterns and microstructural analysis show that BaTiO3 and LSMO phases exist independently in BaTiO3-doped composites. The metal-insulator transition temperature (TMI) decreases whereas the maximum resistivity increases very quickly by the increase of BaTiO3 doping level. The partial substitution of Ba by La(0.35 mol%) results in a decrease in resistivity of LSMO/xBa(La)TiO3 composites. Magnetoresistance of BaTiO3-doped composites decreases monotonously in the temperature range 200-400 K in a magnetic field of 5 T, which is completely different from that of LSMO compound. The value of MR decreases at low field (H<1 T) and increases at high fields (H>1 T) with increasing the BaTiO3 doping level at low temperatures below 280 K. These investigations reveal that the magnetotransport properties of LSMO/xBa(La)TiO3 composites are dominated by spin-dependent scattering and tunneling effect at the LSMO/BaTiO3/LSMO magnetic tunnel junction.  相似文献   

20.
The effects of Fe substitution on the structure, magnetic properties, magnetocaloric effect and positive magnetoresistance (MR) effect in antipervoskite compounds SnCMn3−xFex (x=0.05-0.20) have been investigated systematically. Partial substitution of Fe for Mn leads to the monotonic reduction in both the Curie temperature TC and saturated magnetization (MS). It can be attributed to the reduction of electronic density of state at the Fermi energy by Fe-doping. The maximum values of magnetic entropy change (−ΔSM) and positive MR gradually decrease as x increases, due to the broadening of magnetic phase transition. The refrigerant capacity increases initially with x≤0.05, then decreases gradually as x increases further, which is suggested to originate from the competition between the decreasing −ΔSM and broadening temperature span. Our result indicates that the chemical doping on Mn site is an effective method for manipulating the properties of antiperovskite compounds AXMn3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号