首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly c-axis oriented lanthanum-modified bismuth titanate (Bi4−xLaxTi3O12) films having a variety of lanthanum (La) contents were grown on Pt/TiO2/SiO2/Si(100) substrates using metal-organic sol deposition and subsequent annealing at 650 °C for 1 h. After systematically examining the ferroelectric properties of Bi4−xLaxTi3O12 films as a function of the La-content, it was concluded that the film with x=0.85 had the largest remanent polarization in the direction parallel to the c-axis. The Pt/Bi3.15La0.85Ti3O12/Pt capacitor showed a well-saturated polarization-electric field (P-E) switching curve with the switching remanent polarization (2Pr) value of 33 μC/cm2 and the coercive field (Ec) of 68 kV/cm at an applied voltage of 10 V. More importantly, the capacitor exhibited fatigue-free behavior up to 6.5×1010 read/write switching cycles at a frequency of 1 MHz. The capacitor also demonstrated an excellent charge-retaining ability and a strong resistance against the imprinting failure.  相似文献   

2.
Bi4Ti3O12 (BiT), Bi3.25La0.75Ti3O12 (BLT), Bi4−x/3Ti3−xNbxO12 (BTN) and Bi3.25−x/3La0.75Ti3−xNbxO12 (BLTN) thin films have been prepared by pulsed laser deposition. BTN and BLTN films exhibit a maximum in the remanent polarization Pr at a Nb content x=0.018. At this Nb content, the BLTN film has a Pr value (25 μC/cm2) that is much higher than that of BiT and a coercive field similar to that of BiT. The polarization of this BLTN film is fatigue-free up to 109 switching cycles. The high fatigue resistance is mainly due to the substitution of Bi3+ ions by La3+ ions at the A site and the enhanced Pr arises largely from the replacement of Ti4+ ions by Nb5+ ions at the B site. The mechanisms behind the effects of the substitution at the two sites are discussed.  相似文献   

3.
Sr2Bi4Ti5O18 (SBTi) and Nd-modified SBTi (SBNT) thin films were deposited on Pt/Ti/SiO2/Si (1 0 0) substrates using a sol-gel method. Structure, morphology and electric properties were investigated systematically. These films were randomly oriented and composed of rod-like grains. The remanent polarization (2Pr) and coercive field (Ec) of SBNT films were 30 μC/cm2 and 55 kV/cm, respectively. This value of 2Pr was much higher than the reported value of SBTi prepared by pulsed-laser deposition. More importantly, the SBNT films showed high fatigue resistance against continuous switching up to 3×109 cycles and excellent charge-retaining ability up to 3×104 s.  相似文献   

4.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

5.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

6.
Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated on Pt/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD), and the dependence of ferroelectric and dielectric properties of the as-deposited BLT thin films on excess Bi content in precursor sols was studied. It is found that the prepared BLT thin film shows the best polarization-electric field, capacitance-voltage and dielectric constant (?r)-frequency characteristics, when the value of excess Bi content in precursor sols is 10%. In detail, its remnant polarization (2Pr) value is 40 μC/cm2, the capacitance tunability is 21% measured at room temperature under conditions of an applied voltage of 8 V and measurement frequency of 10 kHz, and the ?r is 696 at 100 kHz frequency.  相似文献   

7.
1-3 and 2-2 types Pb(Zr0.53Ti0.47)O3-CoFe2O4 (PZT-CFO) composite films with controllable microstructures, consisted by CFO nanopillar embedded in PZT matrix and PZT-CFO gratings respectively, have been fabricated on Pt/Ti/SiO2/Si substrates by combining lithography technology and pulsed laser deposition. X-ray diffraction confirms that the films are well crystallized under optimized postannealing conditions. Scanning electron microscope reveals that the periodic microstructures can be well controlled. Especially, intrinsic room temperature ferroelectric and ferrimagnetic behaviors are observed simultaneously. The structure-properties relationship is discussed. Our results may provide an alternative method to design and prepare multiferroic composite films with controllable microstructures.  相似文献   

8.
Dielectric permittivities (ε′,ε″) have been measured as functions of temperature (140-535 K) and frequency (500 Hz-2.0 MHz) in a (001)-cut Pb(In1/2Nb1/2)0.7Ti0.3O3 (PINT30%) single crystal grown by the modified Bridgman method with Pb(Mg1/3Nb2/3)0.71Ti0.29O3 (PMNT29%) seed crystal. A diffused phase transition was observed in the temperature region of ∼430-460 K with strong frequency dispersion. Above the Burns temperature TB≅510 K, the dielectric permittivity was found to follow the Curie-Weiss behavior, ε′=C/(TTC), with parameters C=3.9×105 and TC=472 K. Below TB≅510 K, polar nanoclusters are considered to appear and are responsible for the diffused dielectric anomaly. Optical transmission, refractive indices, and the Cauchy equations were obtained as a function of wavelength at room temperature. The unpoled crystal shows almost no birefringence, indicating that the average structural symmetry is optically isotropic. The crystal exhibits a broad transparency in the wavelength range of ∼0.4-6.0 μm.  相似文献   

9.
Lanthanum-substituted bismuth titanate, Bi3.5La0.5Ti3O12 (i.e., x=0.5 in Bi4−xLaxTi3O12), thin films have been grown on Pt/Ti/SiO2/Si substrates using pulsed laser deposition. The frequency dependence of the real part ε′(ω) and the imaginary part ε″(ω) of the dielectric constant has been studied. The ε′(ω) does not show any sudden change within the frequency range of 102-106 Hz. In contrast, the ε″(ω) shows a large dispersion as frequency decreases. The observed relaxation behavior in ε″(ω) can be explained in terms of a migration of oxygen vacancies in (Bi2O2)2+ layers, not in Bi2Ti3O10 perovskite layers.  相似文献   

10.
11.
The co-existence of ferroelectric and ferromagnetic properties at room temperature is very rarely observed. We have been successful in converting ferroelectric PbTiO3 into a magnetoelectric material by partly substituting Fe at the Ti site. The Pb(FexTi1−x)O3 system exhibits ferroelectric and ferromagnetic ordering at room temperature. Even more remarkably, our results demonstrate a coupling between the two order parameters. Hence it could be a futuristic material to provide cost effective and simple path for designing novel electromagnetic devices.  相似文献   

12.
To investigate temperature-dependent ferroelectric and dielectric properties of ferroelectric films, Bi3.25La0.75Ti3O12 (BLT) thin films were prepared on Pt-coated silicon substrates by pulsed laser deposition. The ferroelectric and dielectric behaviors have been studied in a wide temperature range from 80 K to room temperature. The saturated polarization (Psat) decreases with decreasing temperature and decreasing electric field, whereas remnant polarization (Pr) shows a more complex temperature dependence. These results, which can be well explained based on a temperature-dependent charged defects-domain wall interaction model, might be helpful for further understanding the domain switching behavior. Based on these results, an alternative way to investigate temperature-dependent ferroelectric fatigue is proposed and experimentally carried out. The measured fatigue rate is found to be linearly dependent on temperature, consistent with the report on Pb(Zr,Ti)O3 films. Temperature-dependent dielectric measurements of the films further confirm the above explanation.  相似文献   

13.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

14.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

15.
Neodymium doped bismuth layer structure ferroelectrics (BLSFs) ceramics CaBi4−xNdxTi4O15 (x=0, 0.25, 0.50, 0.75) were prepared by solid-state reaction method. X-ray diffraction pattern showed that single phase was formed when x=0-0.75. The refined lattice parameters showed that a (b) axes decrease at x=0.25 and increase with more Nd3+ dopant. The effects of Nd3+ doping on the dielectric and ferroelectric properties of CaBi4Ti4O15 ceramics are studied. Nd3+ dopant decreased the Curie temperature linearly, and the dielectric loss, tan δ, as well. The remnant polarization of Nd3+ doped CaBi4Ti4O15 ceramics was increased by 80% at x=0.25, while more Nd3+ dopant decreased the remnant polarization. CaBi3.75Nd0.25Ti4O15 ceramics had the largest piezoelectric constant d33. The structure and properties of CaBi4−xNdxTi4O15 ceramics showed that Nd3+ may occupy different crystal locations when Nd3+ content x is less than 0.25 and more than 0.50.  相似文献   

16.
Using the standard solid-state reaction method, several vanadium-doped ferroelectric ceramics of type SrBi4−x/3Ti4−xVxO15 (SBTV-x) were synthesized. The vanadium doping content, x, ranges from 0.000 to 0.06. The crystal structure of SrBi4Ti4O15 is not affected by V-doping. The electric breakdown voltage of the samples increases with V content. Meanwhile, V-doping results in a notable enlargement of remnant polarization (2Pr). The 2Pr of STBV-0.03 reaches a very large value, which is over 50 μC/cm2 and is nearly twice greater than that at zero doping. The Curie temperatures of V-doped samples decrease slightly in comparison with that of SrBi4Ti4O15. V-doping can improve the electric properties of SrBi4Ti4O15 without sacrificing its thermal stableness.  相似文献   

17.
(Pb0.95Ca0.05)(Nb0.02Zr0.80Ti0.20)O3 [PCNZT] thin films were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering with and without a LaNiO3 [LNO] buffer layer. Ca and Nb elements in PZT films enhance the ferroelectric property, LaNiO3 buffer layer improves the crystal quality of the PCNZT thin films. PCNZT thin films possess better ferroelectric property than that of PZT films for Ca and Nb ion substitution, moreover, PCNZT thin films with a LNO buffer layer possess (1 0 0) orientation and good ferroelectric properties with high remnant polarization (Pr = 38.1 μC/cm2), and low coercive field (Ec = 65 kV/cm), which is also better than that of PCNZT thin films without a LNO buffer layer (Pr = 27.9 μC/cm2, Ec = 74 kV/cm). The result shows that enhanced ferroelectric property of PZT films can be obtained by ion substitution and buffer layer.  相似文献   

18.
Praseodymium doped Bi4Ti3O12 (BIT) ceramics with composition Bi2.9Pr0.9Ti3O12 (BPT) were prepared by solid state reaction. These samples have polycrystalline Bi-layered perovskite structure without preferred orientation, and consist of well-developed plate-like grains with random orientation. Pr doping into BIT causes a large shift of the Curie temperature (TC) of the BIT from 675 to 398 °C. At an electric field of 87 kV/cm, the remanent polarization and the coercive field of the BPT ceramics are 30 μC/cm2 and 52 kV/cm, respectively. Furthermore, the dielectric permittivity and the dissipation factor of the BPT ceramics are 300 and 0.003 at 1 MHz, 1 V, and room temperature. Ferroelectric properties of the BPT ceramics are superior to V-doped Bi4Ti3O12 (∼20 μC/cm2 and 80 kV/cm) and (Sr, Ta)-doped Bi4Ti3O12 (∼12 μC/cm2 and 71 kV/cm) ceramics. In addition, the dense ceramics of praseodymium-doped B4Ti3O12 were obtained by sintering at 1100 °C, about 100-200 °C lower than those of the SrBi2Ta2O9 system.  相似文献   

19.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

20.
Using the standard solid-state reaction method, several vanadium-doped ferroelectric ceramics of type SrBi4−x/3Ti4−xVxO15 (SBTV−x) were synthesized. The vanadium doping content, x, rangs from 0.00 to 0.06. The crystal structure of SrBi4Ti4O15 is not affected by V-doping. The electric breakdown voltage of the samples increases with V content. Meanwhile, V-doping results in a notable enlargement of remnant polarization (2Pr). The 2Pr of STBV−0.03 reaches a very large value, which is over 50 μC/cm2 and is nearly twice greater than that at zero doping. The Curie temperatures of V-doped samples decrease slightly in comparison with that of SrBi4Ti4O15. V-doping can improve the electric properties of SrBi4Ti4O15 without sacrificing its thermal stableness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号