首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Using the four-probe method, we investigate the electrical conductivity of Cu3N under high pressure with the diamond anvil cell. Cu3N is a semiconductor at ambient pressure showing a band gap about l eV. With the application of quasi-hydrostatic pressures, its resistance decreases dramatically over five orders of magnitude from ambient to 9 GPa. The compound became a metal at pressure about 5.5 GPa, which is in well agreement with the recent first principle calculation.  相似文献   

2.
High pressure Raman and angle dispersive X-ray diffraction (ADXRD) measurements on the metallic hexaboride LaB6 have been carried out upto the pressures of about 20 GPa. The subtle phase transition around 10 GPa indicated in Raman measurements is confirmed by ADXRD experiments to be a structural change from cubic to orthorhombic phase. Ab-initio electronic band structure calculations using full potential linear augmented plane wave method carried out as a function of pressure show that this transition is driven by the interception of Fermi level by electronic band minimum around the transition pressure.  相似文献   

3.
Single-wall carbon nanotubes (SWNTs) under high pressure exhibit high structural stability and a series of structural transitions up to 35 GPa. As theoretically predicted, the irreversible transformation of SWNTs in the pressure range of 10–30 GPa can be attributed to the polymerization of nanotubes. The electrical conductivity of SWNTs is studied at high pressures up to 35 GPa using a diamond anvil cell (DAC) with electrically conductive anvils of the “rounded cone-plane” type made of synthetic carbonado-type diamonds. SWNTs are studied before and after the application of high pressure using the Raman confocal microscopy technique. Analysis of Raman spectra and pressure dependences of the SWNT resistance shows that the observed structural changes in SWNTs are reversible and no polymerization or collapse are observed.  相似文献   

4.
The results of electrical resistance and angle dispersive X-ray diffraction measurements at high pressures and ambient temperature on the chalcogenide spinel, CuIr2S4 are reported. The resistance increases gradually and reaches around 12 GPa a value that is approximately forty times the initial value. Above 15 GPa, the resistance decreases up to 30 GPa and on further pressure increase tends to saturate at a value slightly above the ambient pressure value. Thus, the material exhibits a reentrant high conducting phase under pressure. The behaviour of the electrical resistance exhibits a close correlation with the structural evolution with pressure.  相似文献   

5.
The transformation of magnetic structure under hydrostatic and quasi-hydrostatic pressures up to 4 GPa was studied for iron borate FeBO3 by the neutron diffraction method. Under quasi-hydrostatic conditions, the orientation of iron magnetic moments changes at pressures P≥1.4 GPa. Under hydrostatic conditions, no changes in the magnetic structure of iron borate were observed up to 2.1 GPa. This behavior is caused by the influence of the inhomogeneity (in magnitude and direction) of elastic stresses on the configuration of magnetic sublattices.  相似文献   

6.
纳米晶Si在高压下的电学性质与金属化相变   总被引:1,自引:0,他引:1       下载免费PDF全文
 在金刚石压砧装置上,采用电阻和电容测量方法,研究了粒径为15~18 nm和80 nm的纳米晶Si在室温下、24 GPa内的电阻、电容与压力的关系。实验结果表明,它们分别在19~17 GPa和14 GPa左右发生了金属化相变。  相似文献   

7.
We report the results of a synchrotron based X-ray diffraction study of bct-Fe2B under quasi-hydrostatic conditions from 0 to 50 GPa. Over this pressure range, no phase change or disproportionation has been observed. A weighted fit of the data to the Birch-Murnaghan equation of state yields a value of the bulk modulus, K, of 164±14 GPa and the first pressure derivative of the bulk modulus, K′, of 4.4±0.5. The compression is found to be anisotropic, with the a-axis being more incompressible than the c-axis.  相似文献   

8.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

9.
The electrical transport properties of solid xenon were directly measured at pressures up to 155 GPa and temperatures from 300 K to 27 mK. The temperature dependence of resistance changed from semiconducting to metallic at pressures between 121 and 138 GPa, revealing direct proof of metallization of a rare-gas solid by electrical transport measurements. Anomalies in the conductivity are observed at low temperatures in the vicinity of the transition such that purely metallic behavior is observed only at 155 GPa over the entire temperature range.  相似文献   

10.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

11.
A distinct optical emission from the Rh203 (Ⅱ) structural sapphire is observed under shock compression of 125, 132, and 143 GPa. The emission intensity continuously increases with the thickness of shocked sapphire. The colour temperature is determined to be about 4000 K, which is obviously smaller than the reported value of the alpha phase alumina at the pressures below 80 GPa. The present results suggest that the structural transformation will cause an obvious change of optical property in sapphire.  相似文献   

12.
We present a first ab initio investigation of the electron-phonon coupling (EPC) of molecular metallic hydrogen with a Cmca structure based on the linear-response approach. This molecular metallic hydrogen with overlapping bands has an elastic instability at lower pressures (<300 GPa), but stabilizes dynamically under further compression as indicated by the absence of phonon softening, thus supporting the choice of Cmca structure as a good candidate for metallic hydrogen. Within the conventional BCS theory, the predicted critical temperature Tc is 107 K at 347 GPa, so indicating good candidacy for a high temperature superconductor. With increasing pressure, interestingly, the EPC parameter λ, hence, Tc increases, resulting from the increased electronic density of states at the Fermi level and EPC matrix element 〈I2〉, in spite of an enhanced average phonon frequency 〈ω2〉.  相似文献   

13.
We present new results on the pressure dependence of the electronic band gap of molecular C60 measured by photoluminescence spectroscopy up to 10 GPa at room temperature. In agreement with previous results, the energy gap decreases with increasing pressure up to about 6 GPa. For higher pressures, however, we observe an energy gap that is wider than that at 6 GPa.  相似文献   

14.
The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent-nanotube interaction is more complex than previously thought.  相似文献   

15.
Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate. Received: 28 March 2001 / Accepted: 2 August 2001 / Published online: 17 October 2001  相似文献   

16.
Shock temperature of molybdenum is deduced to be 7853±813 K from release temperature at 374 GPa via pyrometry experiment. Theoretically, temperatures along the Hügoniot are calculated up to pressures of 500 GPa, over the shock melting pressure region, with contributions from electrons considered. At low pressures, the calculated results are consistent with NRS temperature measurements and pyrometry measurements, and accord with SESAME EOS and theoretical calculations taking the strength of the sample into account. At pressures above 100 GPa the results are much different from calculations without the contribution from the electrons, but consistent with the shock temperature deduced from experimental results in this work.  相似文献   

17.
The optical absorption spectra of iron borate FeBO3 were measured in diamond anvil cells at high pressures up to P=82 GPa. The electronic transition with an abrupt jump in the absorption edge from ~3 to 0.8 eV was observed at P≈46 GPa. The resistance and its temperature dependence were directly measured for FeBO3 at high pressures up to 140 GPa. It was established that the electronic transition at P≈46 GPa was accompanied by the insulator-semiconductor transition. In the high-pressure phase, the thermoactivation gap decreases smoothly at 46<P<140 GPa approximately from 0.55 to 0.2 eV following the linear law. The extrapolated value of the pressure at which the sample becomes fully metallic is equal to about 210 GPa.  相似文献   

18.
 本文使用固态氩做传压介质,在自制的Mao-Bell型金刚石对顶砧装置中获得了90 GPa的准静水压。通过测量样品室内不同位置上红宝石荧光R1线的频移来确定压力分布。实验结果表明在80 GPa以下,样品室内不同位置上的压力与平均压力(p)的差Δp很小,最大的Δp/p不超过1.5%。在90 GPa时,红宝石的荧光R线与常压的很相似。这表明利用固态氩做传压介质可以获得接近100 GPa的准静水压。此外,对红宝石荧光光谱中位置在14 938 cm-1和14 431 cm-1两条谱线随压力的变化情况也作了讨论,并由此得出结论,14 938 cm-1这条线也可用来标定压力。  相似文献   

19.
In situ resistivity measurement has been performed to investigate the electron transport property of powered CdTe under high pressure and moderate temperature in a designed diamond anvil cell. Several abnormal resistivity changes can be found at room temperature when the pressure increases from ambient to 33 GPa. The abnormal resistivity changes at about 3.8 GPa and 10 GPa are caused by the structural phase transitions to the rock-salt phase and to the Cmcm phase, respectively. The other abnormal resistivity changes at about 6.5 GPa, 15.5 GPa, 22.2 GPa and about 30 GPa never observed before are due to the electronic phase transitions of CdTe. The origin of the abnormal change occurred at about 6.5 GPa is discussed. The temperature dependence of the resistivity of CdTe shows its semiconducting behaviour at least before 11.3 GPa.  相似文献   

20.
Abstract

Using solid argon as pressure medium, quasi-hydrostatic pressure was obtained at room temperature in the diamond cell up to 90 GPa. The mechanism of the disappearance of ruby R lines and the applicability of ruby pressure scale under quasi-hydrostatic pressure above 100 GPa was discussed. The deviation of every pressure measured at nine positions in the cell per mean pressure was less than 1.5% at pressure below 80 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号