首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the linearized quantum hydrodynamic (QHD) theory, electronic excitations induced by a charged particle moving between or over two parallel two-dimensional quantum electron gases (2DQEG) are investigated. The calculation shows that the influence of the quantum effects on the interaction process should be taken into account. Including the quantum statistical and quantum diffraction effects, the general expressions of the induced potential and the stopping power are obtained. Our simulation results indicate that a V-shaped oscillatory wake potential exists in the electron gases during the test charge intrusion. Meanwhile, double peaks will occur in the stopping power when the distance of two surfaces is smaller and the test charge gets closer to any one of the two sheets.  相似文献   

2.
In order to study the effect of interaction and lattice distortion on quantum coherence in one-dimensional Fermi systems, we calculate the ground state energy and the phase sensitivity of a ring of interacting spinless fermions on a dimerized lattice. Our numerical DMRG studies, in which we keep up to 1000 states for systems of about 100 sites, are supplemented by analytical considerations using bosonization techniques. We find a delocalized phase for an attractive interaction, which differs from that obtained for random lattice distortions. The extension of this delocalized phase depends strongly on the dimerization induced modification of the interaction. Taking into account the harmonic lattice energy, we find a dimerized ground state for a repulsive interaction only. The dimerization is suppressed at half filling, when the correlation gap becomes large. Received: 11 February 1998 / Revised: 1st April 1998 / Accepted: 30 April 1998  相似文献   

3.
We investigate the effect of the longitudinal-optical phonon field on the binding energies of excitons in quantum wells, well-wires and nanotubes based on ionic semiconductors. We take into account the exciton-phonon interaction by using the Aldrich-Bajaj effective potential for Wannier excitons in a polarizable medium. We extend the fractional-dimensional method developed previously for neutral and negatively charged donors to calculate the exciton binding energies in these heterostructures. In this method, the exciton wave function is taken as a product of the ground state functions of the electron polaron and hole polaron with a correlation function that depends only on the electron-hole separation. Starting from the variational principle we derive a one-dimensional differential equation, which is solved numerically by using the trigonometric sweep method. We find that the potential that takes into account polaronic effects always give rise to larger exciton binding energies than those obtained using a Coulomb potential screened by a static dielectric constant. This enhancement of the binding energy is more considerable in quantum wires and nanotubes than in quantum wells. Our results for quantum wells are in a good agreement with previous variational calculations. Also, we present novel curves of the exciton binding energies as a function of the wire and nanotubes radii for different models of the confinement potential.  相似文献   

4.
We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.  相似文献   

5.
An electrostatic model for calculating the band-gap renormalization in a two-dimensional (2D) semiconductor layer (quantum well) due to the Coulomb interaction between nonequilibrium charge carriers has been proposed. Consideration is given only to the first quantum-well energy levels for electrons and heavy holes. The exchange and correlation energies are calculated for the first time taking into account the charge-carrier potential energyfluctuations created by electrons and holes along the 2D layer. A relationship for the screened Coulomb potential along the 2D layer is derived, which, within the extremely narrow quantum-well approximation, transforms into the known expression. The band-gap renormalization and the photoluminescence line shape for the GaAs 2D layer in an AlxGa1?x As matrix are computed depending on the concentration of nonequilibrium electrons and holes. The calculated band-gap renormalization is in agreement with the available experimental data at a high photoexcitation of the quantum well when the electrons and holes form the 2D plasma.  相似文献   

6.
钟红伟  唐翌 《中国物理快报》2006,23(8):1965-1968
The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.  相似文献   

7.
The columnar dimerized antiferromagnetic S?=?1/2 spin ladder is numerically studied by the density-matrix renormalization-group (DMRG) method. The elastic lattice with spin-phonon coupling ?? and lattice elastic force k is introduced into the system. Thus the S?=?1?/?2 Heisenberg spin chain is unstable towards dimerization (the spin-Peierls transition). However, the dimerization should be suppressed if the rung coupling J ?? is sufficiently large, and a Columnar dimer to Rung singlet phase transition takes place. After a self-consistent calculation of the dimerization, we determine the quantum phase diagram by numerically computing the singlet-triplet gap, the dimerization amplitude, the order parameters, the rung spin correlation and quantum entropies. Our results show that the phase boundary between the Columnar dimer phase and Rung singlet phase is approximately of the form J ?? ~ \hbox{$(\frac{k}{\alpha^{2}})^{-\frac{5}{4}}$} ( k ?? 2 ) ? 5 4.  相似文献   

8.
We introduce the ‘decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PBG) reservoir successfully. By utilizing the master equations, the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained. The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account. It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line. The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.  相似文献   

9.
A one-dimensional disordered system of electrons described by a tight binding model interacting with vibrational degrees of freedom (in harmonic approximation) is considered. A stable configuration is determined by a numerical minimization of the total energy which is based on the adiabatic approximation. The behaviour of the electron density (charge density wave) and the density of states is analysed. The localization properties are investigated as well. In contrast to the corresponding disordered system with vanishing electron-phonon coupling the present model has an energy gap. The formation of the gap and the polaron band is shown to be quite different for both onsite and intersite types of coupling terms. For large disorder, the lattice distortion and the gap disappear if only the vibrational contribution to the intersite coupling is important. They increase, however, if only the vibrational contribution to the site energies is taken into account. In both cases the localization length decreases upon increasing the electron-phonon coupling energy. The results are discussed with respect to low dimensional organic materials and amorphous semiconductors.  相似文献   

10.
The electromagnetic form factors and low-energy observables of the deuteron are studied with the help of the light-front approach, where the deuteron is regarded as a weakly bound state of a proton and a neutron. Both the S and D wave interacting vertexes among the deuteron, proton, and neutron are taken into account. Moreover,the regularization functions are also introduced. In our calculations, the vertex and the regularization functions are employed to simulate the momentum distribution inside the deuteron. Our numerical results show that the lightfront approach can roughly reproduce the deuteron electromagnetic form factors, like charge G_0, magnetic G_1, and quadrupole G_2, in the low Q~2 region. The important effect of the D wave vertex on G_2 is also addressed.  相似文献   

11.
An interpretation of the Raman data of the organic superconductor (BEDT-TTF)2 I 3 is given, based on the modified charge bag model for superconductivity. The Raman intensities are calculated at zero temperature both in the normal as well as the superconducting (SC) states. The scattering due to charge carriers as well as the phonons are taken into account. The results show a constant intensity background which reduces on going from the normal to the superconducting state. Similarly, the loss of intensity, broadening and softening of the frequency of a low lying phonon on going from the normal to the SC state are predicted. All these features are in qualitative agreement with the observed Raman data.  相似文献   

12.
We propose a new method to form a novel controfiable photonic crystal with cold atoms and study the photonic band gap (PBG) of an infinite 1D CO2-laser optical lattice of SSRb atoms under the condition of quantum coherence. A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed. Using the eigenquation of defect mode, we calculate the defect mode when a defect is introduced into such a lattice. Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.  相似文献   

13.
Taking into account the recent advances in the epitaxial growth of single-crystal InN leading to a drastic re-evaluation of its fundamental energy band gap, we have studied the electronic properties of InNxP1-x (x < 0.01) ternary alloy. Using the empirical pseudopotential method under the virtual crystal approximation, combined with the Harrison bond orbital model, the band gap at Γ, X and L points, the effective masses of the Γ valley and the electronic charge densities are calculated as a function of nitrogen composition. The fitted expressions of the energy band gaps indicate that the bowing parameter at Γ reached a broad value for very low nitrogen incorporation ( ). Furthermore, the band gap at Γ point decreases drastically with increasing nitrogen composition up to 1%. The elastic constants and the optical phonon frequencies are also reported. Our theoretical results provide a good agreement with the available data.  相似文献   

14.
In molecular zinc-porphyrin-based donor–acceptor systems, the electron transfer from the second singlet excited state S2 is accompanied by ultrafast recombination into the first excited state, resulting in a low quantum yield of the thermalized charge-separated state (20%). It is demonstrated that the quantum yield of ultrafast charge separation in donor–acceptor triads D–A1–A2 can be close to 100% in molecular systems with lifetimes of the S2 state longer than 150 ps. As prototypes of such systems, donor–acceptor diads D–A1 and triads D–A1–A2 are considered, wherein the xanthione molecule plays the role of a donor. The ranges of the model parameters are determined in which the efficiency of charge separation is high. The twostage photoinduced charge transfer is studied within the framework of a multichannel stochastic model that takes into account the reorganization of a polar solvent and a high-frequency intramolecular vibrational mode.  相似文献   

15.
We investigate the phonon-induced decoherence and dissipation in a donor-based charge quantum bit realized by the orbital states of an electron shared by two dopant ions which are implanted in a silicon host crystal. The dopant ions are taken from the group-V elements Bi, As, P, Sb. The excess electron is coupled to deformation potential acoustic phonons which dominate in the Si host. The particular geometry tailors a non-monotonous frequency distribution of the phonon modes. We determine the exact qubit dynamics under the influence of the phonons by employing the numerically exact quasi-adiabatic propagator path integral scheme thereby taking into account all bath-induced correlations. In particular, we have improved the scheme by completely eliminating the Trotter discretization error by a Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-Markov approximation we find that the latter yields appropriate estimates for the decoherence and relaxation rates. However, noticeable quantitative corrections due to non-Markovian contributions appear.  相似文献   

16.
Electronic excitations induced by a charged particle moving above two-dimensional electron gases are studied by means of the linearized quantum hydrodynamic (QHD) theory. In this calculation, we show that the influence of the quantum effects on the interaction process should be taken into account. The induced potential and the perturbed density of the electron gases as well as the stopping power of the particles are derived as functions of the projectile velocity, the particle position and the density function when including the quantum statistical and quantum diffraction effects. The dependence relations of the induced potential and the particle speed around the peak position at which the stopping power takes the maximum value are also discussed in this work.  相似文献   

17.
18.
Numerical results for a one dimensional model are used to illustrate the nature of charge oscillation under interband optical excitation in a quantum well with a narrow band gap. The charge oscillation shows molecular rather than atomic character ie charge is transported over the entire quantum well and not just over atomic distances. The associated dipole moment, which corresponds to the interband dipole matrix element, for narrow gap semiconductor quantum well structures can be in the order of nanometres rather than Ångstroms.  相似文献   

19.
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k·p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems.  相似文献   

20.
The one-photon transition probabilities in hydrogen-like ions are calculated for nuclear charge numbers in the range 1 ≤ Z ≤ 100. The calculations are performed in the framework of the relativistic Dirac’s theory for the states with the principal quantum numbers n = 2,3, 4. The finite nuclear size effect is taken into account. The role of the quantum electrodynamics (QED) and nuclear recoil corrections is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号