首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large room-temperature (RT) magnetoresistance (MR) and temperature-dependent MR inversion have been observed in tris (8-hydroxyquinoline) aluminum (Alq3)-cobalt nanocomposites-based organic-inorganic hybrid devices. Negative MR-high resistance for parallel electrodes configuration — due to magnetization reversal of ferromagnetic (FM) electrodes has been observed at low temperatures. As the temperature increases, the MR undergoes a sign change. At room temperature, a positive MR of ∼9.7% with the resistivity dropping monotonously with increasing magnetic fields has been observed. The RT MR is about two orders of magnitude of that in organic-FM nanocomposites measured with nonmagnetic electrodes. The enhancement of RT MR is attributed to the injection of spin polarized carriers into Alq3-Co nanocomposites.  相似文献   

2.
We investigate the magnetoresistance (MR) of thininhomogeneous gold films applying the magnetic field perpendicular as well as parallel to the film plane. The MR-data show a strong anisotropy which can be well explained within the theory of weak electron localization (WEL) in 2d for both field orientations. The important results is that fitting the MR-data for both orientations by the corresponding theoretical expressions we obtain nearly identical values for the phase coherence lengthsL and its temperature dependence. This confirms (i) the correctness of the fitting process and (ii) the validity of the theory. From this we conclude that WEL in 2d can also be used to describe the MR ofinhomogeneous films.  相似文献   

3.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

4.
We report the extraordinarily large positive magnetoresistances (MR, 69400% at 4.5K under a magnetic field of 8.15 T), de Hass-van Alphen oscillations effect at 10 K and the semimetal-Jnsulator-like transition in a wide range of temperature in highly oriented pyrolitic graphite (HOPG). Besides a dominating ordinary MR (OMR) mechanism in the free-electron mode, it is realized from qualitative analysis that the Coulomb interacting quasiparticles within graphite layers play some roles. However it is difficult to associate the transition with the simple OMR theory. In order to investigate the possible origins of the transition, further analysis is carried out. It is revealed that the magnetic-field-induced behaviour is responsible for the semimetal-insulator-like transitions in HOPG.  相似文献   

5.
Nanocrystalline Al1−xFexN films were fabricated using the reactive sputtering method. A large amount of spin-glass-like moments are in the films. With the decrease of temperature, the films turn from the spin-glass-like behavior to ferromagnetism. At low temperatures, the saturation magnetization increases and the coercivity decreases with the increase of x. The coercivity increases significantly below 50 K due to the pinning effect of the frozen disordered spin-glass-like moments. All of the films are semiconducting. The low-temperature transport mechanism turns from tunneling to hopping as x increases. Magnetoresistance (MR) shows weak saturation trend with the applied field because of the hard alignment of the frozen moments. Meanwhile, MR follows the relation of log |MR|=a+bT−1, and the spin polarization satisfies P(T)=P0eβTα, related with the disordered spin-glass-like moments.  相似文献   

6.
The artificial control of grain-boundary resistance and its contribution to magnetic and magneto-transport properties in [Co(3 nm)/Bi(2.5 nm)/Co(3 nm)]Ir20Mn80(12 nm) thin films that exhibit exchange bias is studied. Transverse magnetoresistance (MR) loops exhibit a negative MR in thin films grown by magnetron sputtering on Si/SiNx(100 nm) substrates. This negative MR effect is of the giant-MR (GMR) type, although its magnitude is less than 1%. A considerable exchange bias (EB) effect is observed only at lower temperatures, where both, GMR and isothermal magnetization loops exhibit a shift of −600 Oe at 5 K.  相似文献   

7.
We have prepared nearly monodisperse Fe3O4 of ∼50 nm by a chemical route and investigated the electrical and magnetic transports of the composite granular system. A Verwey transition is observed in the vicinity of 113 K. Above and below the Verwey transition, the electrical transport is dominated by electron hopping behavior showing a good linear relation between resistance and T−1/2. The magnetoresistance (MR) increases with the applied field and does not follow the magnetization to reach the saturation at 10 KOe field. This indicates that the MR is mainly arising from the spin-dependent scattering of electrons through the grain boundaries. The temperature dependence of MR shows it has the highest MR value near the Verwey transition.  相似文献   

8.
Scattering mechanisms of charge carriers in Transparent Conducting Oxide (TCO) films have been analyzed theoretically. For the degenerate polycrystalline TCO films with relatively large crystallite sizes and high carrier concentrations (higher than 5 × 1018 cm–3), the depletion layers between crystallites are very thin compared to the crystallite sizes, and the grain boundary scattering on electrical carriers makes a small contribution to limit the mobility of the films. Instead of thermionic emission current, a tunneling current dominates the electron transport over grain boundaries. The Petritz model which is based on thermionic emission and extensively quoted in literature should not be applicable. The main scattering mechanisms for the TCO films are ionized impurity scattering in the low-temperature range and lattice vibration scattering in the high-temperature range. The ionized impurity scattering mobility is independent of temperature and the mobility due to thermal lattice vibration scattering is inversely proportional to the temperature. The results obtained from Hall measurements on our ZnO, ITO, SnO2 and SnO2:F films prepared with various methods supports the analysis.  相似文献   

9.
In this paper, high quality Al-doped ZnO (AZO) thin films were prepared by direct current (DC) reactive magnetron sputtering using a Zn target (99.99%) containing Al of 1.5 wt.%. The films obtained were characterized by X-ray photoelectron spectroscopy (XPS) and thermoelectric measurements. The XPS results reveal that Zn and Al exist only in oxidized state, while there are dominant crystal lattice and rare adsorbed oxygen for O in the annealed AZO thin films. The studies of thermoelectric property show a striking thermoelectric effect in the AZO thin films. On the one hand, the thermoelectromotive and magnetothermoelectromotive forces increase linearly with increasing temperature difference (ΔT). On the other hand, the thermoelectric power (TEP) decreases with the electrical resistance of the sample. But the TEP increases with the increase of temperature below 300 K, and it nearly does not change around room temperature. The experimental results also demonstrate that the annealing treatment increases TEP, while the external magnetic field degrades TEP.  相似文献   

10.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

11.
Magnetization measurements in two different samples of iron- and iron oxide-encapsulated carbon nanotubes are presented. The samples showed coercivity smaller than 1 kOe. The dependence of the coercivity with the temperature has an abrupt change at temperatures close to 125 K. In this temperature the ZFC and FC magnetization curves also present an abrupt change. This effect is attributed to a Verwey transition.  相似文献   

12.
A simple and cheap method has been developed for the deposition of lead telluride thin films on glass substrates by pulsed Nd:YAG laser evaporation of lead telluride pellets made of high purity Pb and Te powders.Preliminary characterization of the crystallographic and optical properties of the films has been performed as a function of the substrate temperature.The influence of deposition conditions on the sheet resistance of these thin films has been studied. Both deposition temperature, nitrogen pressure during deposition, and addition of Ga and As impurities in the source pellets have been considered.  相似文献   

13.
High temperature transport characteristics of unintentionally doped GaN have been investigated by means of high temperature Hall measurements from room temperature to 500^o C. The increment of electron concentration from room temperature to 500^o C is found to vary largely for different samples. The dispersion of temperature dependence of electron concentration is found to be directly proportional to the density of dislocations in GaN layers calculated by fitting the FWHM of the rocking curves in x-ray diffraction measurements (XRD). The buildup levels in persistent photoconductivity (PPC) are also shown to be directly proportionM to the density of dislocations. The correlation of XRD, Hall and PPC results indicate that the high temperature dependence of electron density in unintentional doped GaN is directly dislocation related.  相似文献   

14.
孙志刚  庞雨雨  胡靖华  何雄  李月仇 《物理学报》2016,65(9):97301-097301
采用溶胶凝胶法以及静电纺丝法, 利用热处理工艺, 成功制备出了多晶锐钛矿型TiO2纳米线, 通过两线法在室温下测试单根TiO2纳米线的V-I曲线来研究其电输运性能及磁阻效应. 结果表明: 在无光照环境下其V-I曲线为不过零点的直线, 零场电阻较大, 在磁场作用下电阻下降, 表现出负磁阻效应; 紫外光辐照环境下TiO2纳米线载流子浓度增加使得电阻变小, 然而在磁场作用下电阻增大, 表现为正磁阻效应. 紫外光辐照导致的载流子浓度变化, 使得负磁阻转变为正磁阻, 我们将磁阻变化归结为d电子局域导致的负磁阻与能带劈裂导致的正磁阻两种机理相互竞争的结果.  相似文献   

15.
Small-area high-barrier Schottky diodes have a very high dynamic resistance. Consequently, special care is needed when measuring the current-voltage characteristic of such diodes. The reported observation of carrier recombination in the depletion layer of high-barrier IrSi/Si Schottky diodes at room temperature is shown to be due to instrumental loading of the diodes. Careful measurements show that carrier recombination is observed only below 200 K and is dependent on the dimension of the diode.  相似文献   

16.
In this paper, Ga-doped ZnO (GZO) films were deposited on glass substrates at different substrate temperatures by RF magnetron sputtering. The effect of substrate temperature on the structural, surface morphological properties, Seebeck and magnetoresistive effects of GZO films was investigated. It is found that the GZO films are polycrystalline and preferentially in the [0 0 2] orientation, and the film deposited at 300 °C has an optimal crystal quality. Seebeck and magnetoresistive effects are apparently observed in GZO films. The thermoelectromotive forces are negative. Decreasing substrate temperature and annealing in N2 flow can decrease carrier concentration. The absolute value of the Seebeck coefficient increases with decreasing carrier concentration. The maximal absolute value of Seebeck coefficient is 101.54 μV/K for the annealed samples deposited at the substrate temperature of 200 °C. The transverse magnetoresistance of GZO films is related to both the magnetic field intensity and the Hall mobility. The magnetoresistance increases almost linearly with magnetic field intensity, and the films deposited at higher substrate temperature have a stronger magnetoresistance under the same magnetic field, due to the larger Hall mobility.  相似文献   

17.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

18.
Magnetic resonance (MR) imaging is capable of demonstrating human anatomy and pathological conditions. Iron oxide magnetic nanoparticles (MNPs) have been used in MR imaging as liver-specific contrast medium, cellular and molecular imaging probes. Because few studies focused on the MNPs other than iron oxides, we developed FeNi alloy MNPs coated with polyethylenimine (PEI). In this study, we demonstrated PEI-coated FeNi MNPs are able to label the cells, which could be detected in MR imaging. For labelling purpose, MNPs were incubated with mouse macrophage cell line (Raw 264.7) for 24 h and these PEI-labelled FeNi alloy MNPs can be uptaken by macrophages efficiently compared with Ferucarbotran, a commercialized superparamagnetic iron oxide (SPIO) under flow cytometry measurement. Besides, these cells labelled with MNPs could be imaged in MR with the identical potency as Ferucarbotran. Further investigation of the cells using Prussian blue staining revealed that FeNi alloy MNPs inside the cells is not oxidized. This phenomenon alleviated the consideration of potential risk of nickel toxicity. We conclude that PEI-coated FeNi MNPs could be candidate for MR contrast medium.  相似文献   

19.
20.
The diffusion of potassium on the polycrystalline iron surface modified by adsorbed oxygen and nitrogen has been studied by means of AES. The migration of potassium atoms has been observed independently on the constitution of the iron surface in the temperature range between 300 and 450 °C. The final concentration of potassium on the iron surface increases with temperature from 300 to 400 °C, irrespective of what atoms accompany potassium on the surface. At 450 °C, the final level of potassium concentration is decreased. The profiles of the concentration on the surface along the line crossing the source of potassium were also acquired. Applying the diffusion model of finite source, the diffusion coefficient of potassium for oxygen-covered and nitrogen-covered surfaces were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号