首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The structural, magnetic and transport properties of the antiperovskite AlCxMn3 (1.0≤x≤1.4) are investigated. It is found that the lattice parameter a increases monotonously with nominal carbon concentration x. The Curie temperature TC increases with increasing x from 1.0 to 1.1 and then decreases with further increasing x. The highest TC value is 364 K, about 70 K higher than that of stoichiometric AlCMn3 reported previously. This may be attributed to a competition between the lattice expansion and the strong Mn 3d-C 2p hybridization. Below 100 K, the resistivity can be well described as ρ(T)=ρ0+AT2, corresponding to the electron-electron scattering. A increases with x, suggesting certain changes in the electronic structure, e.g. carrier density. Above 250 K, all ρ(T) curves depart from the linear dependence on temperature and seem to take on a tendency towards saturation.  相似文献   

2.
Double-layered manganite La1.4Ca1.6Mn2O7 has been synthesized using the solid-state reaction method. It had a metal-to-insulator transition at temperature TM1≈127 K. The temperature dependence of ac susceptibility showed a broad ferromagnetic transition. The two-dimensional (2D)-ferromagnetic ordering temperature (TC2) was observed as ≈245 K. The temperature dependence of its low-field magnetoresistance has been studied. The low-field magnetoresistance of double-layered manganite, in the temperature regions between TM1 and TC2, has been found to follow 1/T5. The observed behaviour of temperature dependence of resistivity and low-field magnetoresistance has been explained in terms of two-phase model where ferromagnetic domains exist in the matrix of paramagnetic regions in which spin-dependent tunneling of charge carriers occurs between the ferromagnetic correlated regions. Based on the two-phase model, the dimension of these ferromagnetic domains inside the paramagnetic matrix has been estimated as ∼12 Å.  相似文献   

3.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS4. The electrical resistivity increased with decreasing temperature according to the exp(T0/T)1/2, an expression derived from variable range hopping with strong electron-electron interaction. The resistivity under a magnetic field was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio ρ(T,0)/ρ(T,H) is 1.5 for H=90 kOe at 100 K and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. A possible mechanism of the large magnetoresistance is discussed.  相似文献   

4.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

5.
The paper reports on the results of a study of the synthesis conditions effects on magnetic and transport properties of nanosized layers of high-Tc diluted magnetic semiconductors (DMS), such as Ge:Mn, Si:Mn and Si:Fe, fabricated by laser-plasma deposition over a wide range of the growth temperature, Tg=(20-550) °C on single-crystal GaAs or Al2O3 substrates. Ferromagnetism of the layers was detected by measurement data of the magneto-optical Kerr effect, anomalous Hall effect, negative magnetoresistance and ferromagnetic resonance (FMR) at 5-500 K. The optimum growth temperature, Tg, for Si:Mn/GaAs layers with Tc≈400 K is shown to be about 400 °C. The Si:Mn/Al2O3 layers with 35% of Mn have the metal-type of conductivity with manifestation of magnetization up to room temperature. Different types of uniformly doped structures and digital alloys have been investigated. In contrast to GaSb:Mn films, Si-based ferromagnetic layers have strongly different magnetic and electric properties in case of uniformly doped structures and digital alloys. Positive results of the Fermi level variation effect on the improvement of Si- and Ge-based DMS layers have been gained on the use of additional doping with shallow acceptor Al impurity which contributes to the increase of the hole concentration and the RKKY exchange interaction of 3d-ions. The Ge:(Mn, Al)/GaAs or Ge (Mn, Al)/Si layers grown at 20 °C feature surprising extraordinary angular dependence of FMR.  相似文献   

6.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

7.
The transport properties and magnetoresistance of half-Heusler CoNb1−xMnxSb (x=0.0-1.0) alloys have been investigated between 2 and 300 K. In this temperature range, a metallic conductivity has been observed for the alloys with higher (x=1.0) and lower (x=0.0-0.2) Mn contents. However, the middle Mn content alloys (x=0.4-0.8) exhibit non-metallic conductive behavior. Their temperature dependence of resistivity undergoes a Mott localization law ρ=ρ0exp(T0/T)p (p=1/4) rather than a thermal excitation regime ρ=ρ0exp(Ea/kT) at low temperature (). The localization can be attributed to atomic and magnetic disorder. Resistivity peaks from 25 to 300 K were also observed for these alloys. Magnetotransport investigation reveals that these resistivity peaks result from localization effect as well as spin-disorder scattering.  相似文献   

8.
GaMnN films with 1-3% Mn deposited on Si(100) and Al2O3(0001) substrates, by the technique of nebulized spray pyrolysis by employing acetylacetonate precursors, have been characterized by X-ray diffraction, photoluminescence spectra and other techniques. The films are ferromagnetic and show magnetic hysteresis. The ferromagnetic TC increases with the Mn content, with the 3% Mn film showing a TC of ∼250 K. Anomalous Hall effect is observed below TC where the films exhibit a small negative magnetoresistance.  相似文献   

9.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

10.
The magnetic, magnetocaloric, and magnetotransport properties of RCo1.8Mn0.2 (R=Er, Ho, Dy, and Tb) were studied by room temperature X-ray diffraction, magnetization, and resistivity measurements at a temperature interval of 5-400 K and magnetic fields up to 5 T. The Curie temperature of RCo2 was found to increase significantly when 10% Mn was substituted for Co. The effective paramagnetic moments were found to be in reasonable agreement with their theoretical values. A large magnetoresistance (MR) of Δρ/ρo≈−13.5% for R=Ho at T≈153 K for ΔH=5 T has been observed. The maximum relative cooling capacities vary from 467 J/kg at low temperature for R=Er to 202 J/kg at the near room temperature for R=Tb.  相似文献   

11.
The magneto-transport properties of ferromagnetic Ga1−xMnxAs epilayers with Mn mole fractions in the range of x≈2.2-4.4% were investigated through Hall effect measurements. The magnetic field-dependent Hall mobility for a metallic sample with x≈2.2% in the temperature range of T=0-300 K was analyzed by magnetic field-dependent mobility model including an activation energy of Mn acceptor level. This model provides outstanding fits to the measured data up to T=300 K. It was found that the acceptor levels with activation energies of 112 meV at B=0 Oe decreased to 99 meV at B=5 kOe in the ferromagnetic region. The decrease in acceptor activation energy was due to the spin splitting of the Mn acceptor level in the ferromagnetic region, and was responsible for increase in carrier concentration.  相似文献   

12.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

13.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

14.
La0.7Sr0.3MnO3 nanoparticles were prepared by a simple chemical coprecipitation route. Structural, magnetoresistance (MR), and magnetic properties were investigated. Rietveld refinement of X-ray powder diffraction result shows that the sample is single-phase with the space group of R3¯C. The result of field-emission scanning electronic microscopy shows that most of the grain sizes are distributed from 50 to 200 nm. The composition determined by energy-dispersive spectroscopy is the stoichiometry of La0.7Sr0.3MnO3. The ferromagnetic to paramagnetic transition is sharp with Curie temperature TC=367 K, which further confirms that the sample is single-phase. The steep change in MR at low fields is attributed to the alignment of the magnetization, while the high-field MR is due to the grain boundary effect.  相似文献   

15.
The compound, LaMn2Ge2, crystallizing in ThCr2Si2-type tetragonal crystal structure, has been known to undergo ferromagnetic order below (TC=) 326 K. In this article, we report the magnetic behavior of nanocrystalline form of this compound, obtained by high-energy ball milling. TC of this compound is reduced marginally for the nanoform, whereas there is a significant reduction of the magnitude of the saturation magnetic moment with increasing milling time. The coercive field however increases with decreasing particle size. Thus, this work provides a route to tune these parameters by reducing the particle size in this ternary family.  相似文献   

16.
Electrical conductivity and magnetoresistance of a series of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets prepared by pyrophoric method have been reported. K doping increases the conductivity as well as the Curie temperature (TC) of the system. Curie temperature increases from 260 to 309 K with increasing K content. Above the metal-insulator transition temperature (T>TMI), the electrical resistivity is dominated by adiabatic polaronic model, while in the ferromagnetic region (50<T<TMI), the resistivity is governed by several electron scattering processes. Based on a scenario that the doped manganites consist of phase separated ferromagnetic metallic and paramagnetic insulating regions, all the features of the temperature variation of the resistivity between ∼50 and 300 K are described very well by a single expression. All the K doped samples clearly display the existence of strongly field dependent resistivity minimum close to ∼30 K. Charge carrier tunneling between antiferromagnetically coupled grains explains fairly well the resistivity minimum in monovalent (K) doped lanthanum manganites. Field dependence of magnetoresistance at various temperatures below TC is accounted fairly well by a phenomenological model based on spin polarized tunneling at the grain boundaries. The contributions from the intrinsic part arising from DE mechanism, as well as, the part originating from intergrannular spin polarized tunneling are also estimated.  相似文献   

17.
We report on laser synthesis of thin 30–200 nm epitaxial layers with mosaic structure of diluted magnetic semiconductors GaSb:Mn and InSb:Mn with the Curie temperature TC above 500 K and of InAs:Mn with TC no less than 77 K. The concentration of Mn was ranged from 0.02 to 0.15. In the case of InSb:Mn and InAs:Mn films, the additional pulse laser annealing was needed to achieve ferromagnetic behavior. We used Kerr and Hall effects methods as well as ferromagnetic resonance (FMR) spectroscopy to study magnetic properties of the samples. The anisotropy FMR was observed for both layers of GaSb:Mn and InSb:Mn up to 500 K but it takes place with different temperature dependencies of absorption spectra peaks. The resonance field value and amplitude of FMR signal on the temperature is monotonically decreased with the temperature increase for InSb:Mn. In the case of GaSb:Mn, this dependence is not monotonic.  相似文献   

18.
The effect of Pr-doping on structural, electronic transport, magnetic properties in perovskite molybdates Sr1−xPrxMoO3 (0≤x≤0.15) has been investigated. The Pr-doping at Sr-site does not change the space group of the samples, but decreases the lattice parameter a. The magnitude of resistivity ρ increases initially (x≤0.08) and then decreases with further increasing Pr-doping level x and ρ(T) behaves as T2 and T dependence in the low-temperature range blow T* and high-temperature range of 150 K<T<350 K, related to the electron-electron (e-e) and electron-phonon (e-ph) scattering, respectively. The magnetic susceptibility χ value of the sample increases with increasing x and the χ(T) curve for all samples can be well described by the model of exchange-enhanced paramagnetism. The specific heat magnitude in the low-temperature region increases with increasing Pr-doping level. The specific heat value agrees with the classical Dulong-Petit phonon specific heat, Ccl=3kBrNA=124.7 J/mol K in the high-temperature region and the temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the increase in the density of state (DOS) at Fermi energy level and the disorder effect due to Pr-doping.  相似文献   

19.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

20.
The title double perovskite has been synthesized by solid-state reaction in air. The crystal structure has been studied from powder X-ray diffraction data. Rietveld fits to the pattern show that this compound has a monoclinic symmetry [a=5.4932(3) Å, b=5.4081(3) Å, c=7.6901(5) Å, β=90.0022(1)°, at 300 K] defined in the space group P21/n, where the Cr and Sb cations are almost completely ordered in the B-sublattice of the perovskite structure. Magnetic susceptibility and magnetization measurements show that this compound behaves as a Curie-Weiss paramagnet at high temperatures with μeff=3.53(1) μB and θP=8 K, and exhibits a robust ferromagnetic component below the ordering temperature of TC=13 K, with a saturation magnetization of 2.36 μB/f.u. at 5 K. To our knowledge, this is the first example of a ferromagnetic double perovskite containing a non-magnetic element, such as Sb, occupying one half of the B positions of the perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号