首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local-oriented single-crystalline ZnO nanowires have been synthesized in large scale by a simple microemulsion method in the presence of sulfonate-polystyrene (S-PS) and dodecyl benzene sulfonic acid sodium salt (DBS). The as-prepared product is characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), infrared (IR) spectra and photoluminescence (PL) spectrum. The nanowires exhibit a local congregation and preferentially grow along the [0 0 2] facet. FT-IR spectrum indicates that S-PS is adsorbed on the surface of ZnO nanowires. The PL spectrum shows evidently red-shifted ultraviolet (UV) emission.  相似文献   

2.
ZnO nanowires and nanotubes have been rationally fabricated within the nanochannels of porous anodic alumina templates by an improved sol-gel template process. X-ray diffraction and selected area electronic diffraction demonstrate that the as-obtained ZnO nanowires and nanotubes can be indexed to hexagonal wurtzite polycrystalline. In this method, zinc nitrate and urea are used as precursors, zinc nitrate serve as zinc ions source, and urea offered a basic medium through its hydrolysis. ZnO nanowires or ZnO nanotubes can be obtained easily by controlling hydrolysis time. The formation mechanism of ZnO nanowires and nanotubes was also discussed.  相似文献   

3.
Novel porous ZnO nanobelts were successfully synthesized by heating layered basic zinc acetate (LBZA) nanobelts in the air. The precursor of LBZA nanobelts consisted of a lamellar structure with two interlayer distances of 1.325 and 0.99 nm were prepared using a low-temperature, solution-based method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy are used to characterize the as-products. PL measurements show that the porous ZnO nanobelts have strong ultraviolet emission properties at 380 nm, while no defect-related visible emission is detected. The good performance for photoluminescence emission makes the porous ZnO nanobelts promising candidates for photonic and electronic device applications.  相似文献   

4.
Single-crystalline gallium nitride nanobelts have been synthesized through the reaction of gallium vapor with flowing ammonia using nickel as a catalyst. The as-synthesized products were characterized using X-ray powder diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and selected-area electron diffraction (SAED). XRD and SAED results revealed that the products are pure, single-crystalline GaN with hexagonal structure. The widths and thickness of the nanobelts ranged from 80 to 200 nm, and 10 to 30 nm, respectively. The lengths were up to several tens of micrometers. The nanobelts had smooth surface with no amorphous sheath, and a sharp-tip end. The growth mechanism of nanobelts was discussed.  相似文献   

5.
Aluminum nitride nanorods were grown during rapid thermal annealing of multi-layered Al2S3 /BaS thin films. Depending on the thickness ratio between the BaS and Al2S3 layers, nanowires or straight nanorods were obtained. Typical dimensions for the nanorods were a diameter in the range of 50-100 nm and a length of 2-5 μm. The nanostructures are formed upon annealing at a relatively low temperature of 900 °C when aluminum evaporates from the thin film, but remains trapped between the thin film surface and the Si wafer, which is used as a support during the annealing. The nitrogen is provided by N2 gas flushed through the annealing chamber. High-resolution transmission electron microscopy showed crystalline, wurtzite-structured AlN nanorods. The growth mechanism in terms of thin film composition, annealing parameters and the role of catalysts is discussed.  相似文献   

6.
Solution synthesis of ZnO nanotubes via a template-free hydrothermal route   总被引:1,自引:0,他引:1  
ZnO nanotubes were successfully synthesized by a simple template-free hydrothermal method. X-ray powder diffraction and transmission electron microscopy were used to characterize the as-prepared ZnO nanotubes. The average size of the nanotubes is 200-500 nm in length and 20-30 nm in diameter. In addition, a further investigation of the optimized synthetic conditions has been carried out.  相似文献   

7.
Single-crystalline ZnO nanowires (NWs) were synthesized by a facile vapor transport method. The good orientation and high crystal quality were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) measurements. Excitation-power-dependence photoluminescence spectra of ZnO NWs show that the UV emission displayed an evident blueshift with increasing excitation power and the corresponding energy shift might be as large as 10 meV. This anomalous phenomenon correlates to the band bending level caused by the surface built-in electric field due to the existence of substantial oxygen vacancies. By increasing the excitation power, the enhanced neutralization effect near the surface will reduce the built-in electric field and lead to a reduction of band bending which triggers the blueshift of the UV emission.  相似文献   

8.
ZnS nanoparticles were synthetized using water-containing AOT reversed micelles as nanoreactors and characterized by UV-Vis spectrophotometry, HRTEM (high-resolution transmission electron microscopy), SAED (selected-area electron diffraction), and digital image processing. The experimental data evidence a slow growing process of fractal-like ZnS nanoparticles’ coupled with a change of their photophysical properties. Both these processes are well described by power laws. The nanoparticles size is mainly controlled by the micellar size. After evaporation of the organic solvent, it has been found that the deposit is constituted by smaller and more stable ZnS nanoparticles bathed in a surfactant matrix. Received: 20 April 1999 / Accepted: 23 April 1999 / Published online: 8 September 1999  相似文献   

9.
Single-crystal magnetite nanowires with average diameter of ca. 20 nm and length of up to several micrometers were prepared by a simple alkaline surfactant-free hydrothermal process. The crystallinity, purity, morphology, and structural features of the as-prepared magnetite nanowires were investigated by powder X-ray diffraction, transmission electron microscopy (TEM) and selected area electron diffraction. The composition and length of nanowires depends on the pH, with higher pH favoring longer nanowires composed entirely of Fe3O4. A mechanism for nanowire growth is proposed.  相似文献   

10.
Highly oriented and densely packed one-dimensional (1D) polycrystalline Zn nanorods were fabricated on zinc plate without any catalyst at room temperature by bombardment with obliquely incident Ar+ ion via ion irradiation method. The sputtered surfaces were fully covered with Zn nanostructures with diameter and the length around 60 nm and 1.3 μm, respectively, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal orientation of the Zn plate was investigated by electron back scattering pattern method (EBSP). The numerical density and morphology of Zn nanostructures (nanoneedle or nanorods) were found to be 2.1 × 106 to 9 × 106/mm2 depending upon the crystal orientation and the atomic density on different crystallographic faces. () faces of Zn polycrystal tended to form more dense nanostructures compared to () faces. This is because of lower atomic density on () faces in comparison with () faces. This indicates that lower atomic density on any crystallographic faces is favorable to form nanostructure of higher density. The outstanding feature of this growth technique is that it provides a new direction for the controllable growth of desired nanostructures of variable density at room temperature without any catalyst. These well-aligned arrays of Zn nanorods/nanoneedle might be a promising material for the future application in nanodevices.  相似文献   

11.
The synthesis of vanadium oxide nanotubes has been achieved by using V2O5 as vanadium oxide precursor. Due to its low cost, high yield and ease of handling, the synthesis starting from V2O5 provides an advantageous access to large quantity of the tubular vanadium oxide nanotubes.  相似文献   

12.
The experimental parameters that control the surface morphology and size of iron cobalt nanoparticles synthesized at room temperature by pulsed laser ablation deposition (PLAD) technique have been systematically investigated. The nanoparticle synthesis has been achieved at higher operating gas pressures of argon. It was found that nanoparticles upon deposition formed small clusters, the size of which increases with decreasing pressure, increasing laser-energy density, and decreasing target-to-substrate distance. This trend could be attributed to change in the kinetic energy of deposited nanoparticles with varying argon pressure, laser-energy, and target-to-substrate distance. The nanoparticles size and size distribution showed strong dependence on argon pressure and weak dependence on laser-energy density and target-to-substrate distance.  相似文献   

13.
ZnO nanowall networks were grown on a Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (P-MBE) without using catalysts. Scanning electronic microscopy (FE-SEM) confirmed the formation of nanowalls with a thickness of about 10-20 nm. X-ray diffraction (XRD) showed that the ZnO nanowall networks were crystallized in a wurtzite structure with their height parallel to the 〈0 0 0 1〉 direction. Photoluminescence (PL) of the ZnO nanowall networks exhibited free excitons (FEs), donor-bound exciton (D0X), donor-acceptor pair (DAP), and free exciton to acceptor (FA) emissions. The growth mechanism of the ZnO nanowall networks was discussed, and their hydrogenation was also studied.  相似文献   

14.
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).  相似文献   

15.
Multiple-arm magnetic CuFe2O4 particles have been synthesized via a simple one-step solution-phase route at the presence of ethylene glycol (EG) ligands, which plays a key role for the shape control of the particle. At low EG content, hexa-arm CuFe2O4 particles with average arm diameter 50 nm and length 400 nm were obtained. Furthermore, a possible mechanism of shape evaluation process of these magnetic particles is discussed.  相似文献   

16.
Fe3O4 nanorods with average diameters of 40-50 nm and lengths of up to 1 μm were synthesized through hydrolysis of FeCl3 and FeSO4 solutions containing urea in the temperature range from 90 to 95 °C in reflux condition for 12 h, following an aging time of 12 h. The porous hematite nanorods were prepared by calcination of the precursor which was obtained from hydrolysis of FeCl3 and FeSO4 solutions containing urea at a temperature of 90 °C for 10 h in hydrothermal condition. The formation of the porosity of hematite was due to the decomposition of FeCO3 and FeOOH. Urea played a key role in the formation of the iron oxide nanorods. Transmission electron microscopy (TEM) images showed that the morphology of magnetite particles is homogeneous in the shape of rods and hematite rods are full of porosity. The values of saturation magnetization (M) and coercivity (H) of magnetite nanorods are 67.55 emu/g and 114 Oe, respectively. The samples were also characterized by X-ray powder diffraction (XRD) and electron diffraction (ED). At last, the forming mechanism of both the magnetite and porous hematite nanorods was discussed.  相似文献   

17.
A facile one-pot solvothermal route has been developed for the synthesis of tubular luminescent polymeric networks [(C3N3)2(NH)3]n, structurally related to the proposed g-C3N4. XRD patterns showed a characteristic 002 basal plane diffractions, indicating an interlayer d spacing of 3.23 Å. XPS spectra show that the C1s and N1s have a symmetric peak and an asymmetric peak at 288.10 and 399.00 eV, respectively. The bulk composition C6N8.9H4.5 determined by elemental analysis is comparable to the calculated value C6N9H3 for this proposed polymer. FTIR spectra indicated the presence of s-triazine ring, which was further supported by the luminescent and UV-vis absorption characteristics probably depending on π→π* electronic transition. The tubular structure has been studied by TEM, SAED, and HREM.  相似文献   

18.
The growth mechanism of Pb1−xFexS nanoparticle films in chemical deposition is discussed. Grain growth for the Pb1−xFexS films with increasing temperature of the chemical bath is observed to be due to the phenomenon of coalescence and formation of bigger particles at higher pH is possibly due to aggregation.  相似文献   

19.
Ti-Si-N thin flms with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13%to 0.00032% by introducing silane at the flow rate of 14sccm.  相似文献   

20.
Inorganic-organic intercalation compounds comprised of montmorillonite (MMT) and aniline salts with different counter anions were prepared by a mechanochemical processing. The intercalation process and the formed structure of intercalation compounds were investigated via X-ray diffraction analysis. The amounts of intercalated species were very likely dependent on the types of counter anions and increased with decreasing the size of counter anions during the mechanochemical processing. Very interestingly, much larger interlayer expansions of 1.51 nm was observed for aniline hydrofluoride AnF- and aniline hydrochloride AnCl-MMT systems in higher intercalates loading levels, suggesting that neutral guest molecules also introduce within the interlayer regions together with anilinium cations by van der Waals interactions. Judging from the larger interlayer expansions and the size of guest molecules, intercalated species are expected to prefer a tri-molecular layer arrangement with their aromatic rings perpendicular to the silicate sheets. In contrast, for aniline hydrobromide AnBr-MMT, the interlayer expansion was ca. 0.52 nm, which reveals that only anilinium cations are introduced by ion exchange and they probably adopt a vertical orientation in the interlayers. It is inferred that aniline hydroiodide AnI-MMT compounds have a heterogeneous structure containing both anilinium and sodium cations in the interlayers. Different intercalation behaviors during the mechanochemical processing strongly suggest the smaller the size of counter anions, the more guest molecules can be intercalated into the confined clay interlayers in highly ordered arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号