首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

2.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

3.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

4.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined.  相似文献   

5.
The emission spectra of Lu2SiO5:Ce single crystal under the excitation of 266 nm laser were investigated. The emission spectra of LSO single crystal show no temperature quenching from 20 to 300 K, under the excitation of 266 nm laser with 2 mJ pulse energy. With rising temperature, the Ce1 emission is slightly decreased, while the Ce2 emission is slightly increased. These results show the emissions of Ce1 and Ce2 is not only dependent on the concentration ratio but also influenced by the possible energy transfer processes, including Ce1 to Ce2, intrinsic STHs to Ce2 and the phonon-assisted transfer processes. The spectral thermal broadening and the spectral overlap become evident at high temperature, leading to the enhancement of energy transfer. When the excitation power lowers, the ratio of Ce1 and Ce2 emission increases, and is close to the Xe lamp ultraviolet (UV) excitation, suggesting that the energy transfer from Ce1 center to Ce2 center may be also dependent on the excitation power.  相似文献   

6.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

7.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

8.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

9.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

10.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

11.
Ce3+ and Tb3+ co-activated LaPO4 nanowires (NWs) were synthesized by the hydrothermal method and studied in contrast to corresponding micrometer rods (MRs). The results indicate that electronic transition rate of Ce3+ and Tb3+ in NWs had only a little variation in comparison with that in MRs, and energy transfer (ET) rate and efficiency of Ce3+→Tb3+ in NWs reduced. It is interesting to observe that the brightness for 5D4-7F5 of Tb3+ via ET of Ce3+→Tb3+ in NWs increased several times than that in MRs. This was attributed to the decreased energy loss in excited states being higher than 5D4 of Tb3+ ions due to hindrance of boundary.  相似文献   

12.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

13.
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4.  相似文献   

14.
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb3+ ions) and the activators (Ce3+ and Eu3+ ions) in single-crystalline films of Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb3+ ions to Ce3+ and Eu3+ ions; (ii) from Ce3+ ions to Eu3+ ions by means of dipole-dipole interaction and through Tb3+ ion sublattice.  相似文献   

15.
Y2−xTbxSiO5 and Y2−xEuxSiO5 nanophosphors with seven different kinds of silicate sources were synthesized by sol-gel method. The structures have been investigated to be composed of nanometer-size grains of 30-60 nm through X-ray diffraction (XRD) and scanning electron microscopy (SEM) was used to compare the different morphology of patterns from seven different silicon sources. The photoluminescence of Y2−xTbxSiO5 was investigated as a function of silicate sources and the results revealed that these nanometer materials showed the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb ions. The characteristic emission 5D0 → 7FJ (J = 1, 2, 4) of Eu ions was also found in the materials of Y2−xEuxSiO5.  相似文献   

16.
We have synthesized blue-emitting CaMgSi2O6:Eu2+ (CMS) and evaluated its thermal stability after baking process. To evaluate its thermal stability, CMS was baked in air at 500 and 600 °C for 20 min, respectively, and compared with BaMgAl10O17:Eu2+ (BAM) treated in the same condition. After baking process, CMS showed somewhat increased photoluminescence (PL) intensity with baking temperature. To investigate the reasons behind the increase of PL intensity after baking process, vacuum ultraviolet (VUV)/PL, electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS) techniques were applied. From the ESR and the XPS analyses, it is noted that spectral intensity of Eu2+ ion somewhat increased. It was believed that due to charge balance Eu3+ ions reduced to Eu2+ ions during the baking process in air. It is clear that the concentration of Eu2+ increased after the baking process in air and it leads to slight increase of the VUV/PL intensity of CMS phosphor.  相似文献   

17.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

18.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail.  相似文献   

19.
Zn2SiO4 doped with Tb3+ were in situ synthesized by a modified sol-gel technology with the assembly hybrid precursor employed four different silicate sources, i.e. 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM result shows that there exist some novel unexpected micromorphological structures of hexagon-like with the dimension of 0.5-1.0 μm. The photoluminescent properties of Zn2SiO4:Tb3+ phosphors have been studied as a function of Tb3+ doping concentration. Cross-relaxation process between identical Tb3+ ions results in the quenching of the 5D3 emission for high concentration sample.  相似文献   

20.
Eu,Ti co-doped Y2O2S:0.03Ti,0.03Eu phosphors and single Eu or Ti doped Y2O2S phosphors were prepared and their luminescent properties were investigated in detail by photoluminescence (PL) spectra, long afterglow spectra and thermoluminescence spectra measurements. The results showed that Y2O2S:Ti,Eu phosphors possess orange-red afterglow color with afterglow time above 5 h. The reddish afterglow color, which corresponds to a set of linear Eu3+ emissions at low-energy range (540-630 nm), was demonstrated to come from the energy transfer process from yellow Ti afterglow emissions, the proposed energy transfer mechanism may well explain the Eu3+ afterglow emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号