首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a review on the formation of gold silicide nanostructures using in situ temperature dependent transmission electron microscopy (TEM) measurements. Thin Au films of two thicknesses (2.0 nm and 5.0 nm) were deposited on Si (1 1 0) substrate under ultra-high vacuum (UHV) conditions in a molecular beam epitaxy (MBE) system. Also a 2.0 nm thick Au film was deposited under high vacuum condition (with the native oxide at the interface of Au and Si) using thermal evaporation. In situ TEM measurements (for planar samples) were made at various temperatures (from room temperature, RT to 950 °C). We show that, in the presence of native oxide (UHV-MBE) at the interface, high aspect ratio (≈15.0) aligned gold silicide nanorods were observed. For the films that were grown with UHV conditions, a small aspect ratio (∼1.38) nanogold silicide was observed. For 5.0 nm thick gold thin film, thicker and lesser aspect ratio silicides were observed. Selected area diffraction pattern taken at RT after the sample for the case of 5.0 nm Au on Si (1 1 0)-MBE was annealed at 475 °C show the signature of gold silicide formation.  相似文献   

2.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

3.
Epitaxial islands grown on various substrates are usually strained because of differences in lattice constants of the materials of the island and the substrate. Shape transition in the growth of strained islands has been proposed as a mechanism for strain relief and a way to form self-organized quantum wires. Shape transition usually leads to an elongated island growth. However, an elongated island growth may also be due to an anisotropic diffusion of material, the anisotropy being imposed by the symmetry of the substrate surface. In the present example, growth of gold silicide wire-like nanostructures on a Si(1 1 0) surface has been investigated by photoemission electron microscopy (PEEM). Growth of elongated unidirectional gold silicide islands, with an aspect ratio as large as 12:1, has been observed by PEEM following gold deposition on the Si substrate and subsequent annealing at the Au-Si eutectic temperature. Distribution of the width and the length of the gold silicide islands as a function of island area shows a feature similar to that for the shape transition. However, detailed investigations reveal that the elongated growth of gold silicide islands is rather mainly due to anisotropic diffusion of gold due to the twofold symmetry of the (1 1 0) surface of the Si substrate.  相似文献   

4.
We report on the growth of unusual star shaped Bi islands and ordered arrays of nanorods on highly ordered pyrolitic graphite (HOPG) substrates. The rods and stars grow with {0 1 2}Bi||{0 0 1}HOPG and are preferentially aligned with the high symmetry directions of the substrate. As more Bi is deposited, the film undergoes a transition to the {0 0 1} orientation. These features are a result of a complex interplay between kinetics, thermodynamics, and the crystallography of the substrate and island material.  相似文献   

5.
The evolution of the surface structure in dodecanethiol self-assembled monolayer on Au(1 1 1) substrate has been studied with ultra high vacuum scanning tunneling microscopy at several temperatures. The structure of substrate Au(1 1 1) surface changed suddenly at a temperature of 110 °C. The enhanced mobility of the substrate gold atoms at this temperature is attributed to the desorption of the dodecanethiol molecules.  相似文献   

6.
N. Zhu  T. Komeda 《Surface science》2007,601(8):1789-1794
We investigate the structure of submonolayer film of 4,4′-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4s + 2t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.  相似文献   

7.
Using high-resolution atomic force microscope we observed in ambient atmosphere the slow morphological transitions of the incipient adlayer of gold grown on (0 0 0 1) sapphire substrate by pulsed laser deposition. The equivalent average uniform thickness of the gold deposition was about 0.55 Å, which is about one-fourth of its monolayer. A dynamic simulation revealed that about 10% of the gold was implanted into the substrate up to the depth of about 3.3 nm and the top monolayer of the sapphire surface was almost completely depleted of oxygen atoms due to the preferential sputtering by the plume particles. The gold adlayer transformed into a labile phase which enhanced the surface roughness and had a preferred orientation of a wavy structure during 24 h of the deposition. The auto-correlation function of this wavy structure in labile metastable phase revealed two-fold symmetry and provided a preferential size of about 4 nm (peak to peak) with a mean separation of 8 nm. At the end of about 6 days this phase was found to completely transform into an apparently de-wetted phase of beads with average in-plane diameter of ∼20 nm and height of ∼7 nm having large size distribution. Each bead was seen to have coating of a concentric corona layer, which might be that of the condensed moisture or other gaseous species from atmosphere because subjecting these samples to vacuum removed this layer. These observations shed light on the dynamics of the pulsed laser deposited metastable gold adlayer in the incipient stage of its growth on sapphire and their wetting or de-wetting mechanisms in ambient atmosphere.  相似文献   

8.
The morphology and the atomic scale structure of thin gold films (up to 2.5 ML) on Pd(1 1 0) were studied by means of scanning tunneling microscopy and surface X-ray diffraction. At room temperature the films exhibit a multilayer growth mode accompanied by the formation of highly anisotropic islands. Annealing above 500 K significantly increases the smoothness of the gold films, which are in registry with the substrate. Above a critical threshold of two monolayers a (1 × 2) missing-row reconstructed film is found. This reconstructed surface is well ordered after annealing at temperatures above 580 K. The specific gold film morphology is envisaged as a way to relax the strain caused by the mismatch between gold and palladium.  相似文献   

9.
The surface structure of Au(1 1 1) electrodes covered by 1,8-octanedithiol self-assembled monolayers (SAMs) was studied with in situ scanning tunnelling microscopy (STM) as a function of the electrode potential in acidic and alkaline electrolytes. We investigated the correlation between the dynamics of the SAM and the underlying gold atoms during the reductive desorption and oxidative readsorption processes. The reductive desorption of 1,8-octanedithiol is characterized by a transition from a compact monolayer with an upright molecular configuration to a striped phase with flat lying dithiol molecules, whereas during the oxidative readsorption process the surface first becomes increasingly covered by the striped phase until the transition to the compact phase occurs. We also considered under equivalent conditions 1-octanethiol/Au(1 1 1) SAMs which were used as a reference to evaluate the influence of the -SH terminal group on the structure and stability of dithiol SAMs. The desorption and readsorption of both the dithiol and the monothiol have a considerable influence on the substrate morphology which is manifested in the dynamics of vacancy islands, gold islands and indentation of step edges. Quantum mechanical calculations in the framework of density functional theory (DFT) show that adsorbed thiols greatly facilitate the detachment of gold atoms from step edges. The high mobility of gold atoms observed experimentally is compatible with the presence of a defected layer of gold atoms. The DFT results suggest that the formation of a monolayer may involve the diffusion and self assembly of thiolate-Au moieties rather than the diffusion of the bare thiolates across the surface. This mechanism explains the formation of a defected layer of gold atoms.  相似文献   

10.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system is fundamentally important from the view point of device performance.We study interface electronic structure of vanadium (V) thin-film deposited on 6H-SiC(0 0 0 1) Si-face by using a soft X-ray emission spectroscopy (SXES). For specimens of V(38 nm)/6H-SiC (substrate) contact systems annealed at 850 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate. The product of materials such as silicides and/or ternary materials is suggested. Similarly, the C Kα emission spectra show the shape and peak energy characteristic of vanadium carbide including substrate 6H-SiC signal.  相似文献   

11.
J.L. Qi 《Applied Surface Science》2009,256(5):1486-1491
We report a simple and effective one-step synthesis route for synthesizing a composite consisted of carbon nanotubes (CNTs) and graphite shell-encapsulated cobalt nanoparticles using plasma-enhanced chemical vapor deposition on Si (1 0 0) substrate covered with catalyst Co particles, discharging a mixture of H2 and CH4 gas, and characterize the obtained composite by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscope, and X-ray photoelectron spectroscopy. The results show that CNTs align perpendicularly to the substrate and graphite shell-encapsulated Co nanoparticles clung to the external surfaces of aligned CNTs. The diameter of the graphite shell-encapsulated Co nanoparticles increases with increasing the H2 content in H2 and CH4 carbonaceous gas. A possible growth mechanism of the CNTs and graphite shell-encapsulated cobalt nanoparticles composite has been explored.  相似文献   

12.
A simple method based on the thermal oxidation of Si wafers in presence of a mixture of MgO and graphite powder was developed for large-scale synthesis of very long amorphous silica nanowires. The synthesis was done with and without gold as the catalyst. Almost aligned uniform nanowires with diameters within 60-90 nm and length up to few hundred micrometers were obtained using gold as the catalyst while bicycle chain like nanowires were obtained in absence of the catalyst. The growth sequence of the nanowires was observed through scanning electron microscope. Both forms of the nanowires emitted blue lights at 414 nm (3 eV) under excitation at 250 nm.  相似文献   

13.
Zhenjun Li 《Surface science》2007,601(8):1898-1908
The formation of alloys by adsorbing gold on a Pd(1 1 1) single crystal substrate and subsequently annealing to various temperatures is studied in an ultrahigh vacuum by means of Auger and X-ray photoelectron spectroscopy. The nature of the alloy surface is probed by CO chemisorption using temperature-programmed desorption and reflection-absorption infrared spectroscopy. It is found that gold grows in a layer-by-layer fashion on Pd(1 1 1) at 300 K, and starts to diffuse into the bulk after annealing to above ∼600 K. Alloy formation results in a ∼0.5 eV binding energy decrease of the Au 4f XPS signals and a binding energy increase of the Pd 3d features of ∼0.8 eV, consistent with results obtained for the bulk alloy. The experimentally measured CO desorption activation energies and vibrational frequencies do not correlate well with the surface sites expected from the bulk alloy composition but are more consistent with significant preferential segregation of gold to the alloy surface.  相似文献   

14.
G. Prévot  B. Croset 《Surface science》2007,601(9):2017-2025
We have studied by Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) the growth of gold particles on the N/Cu(0 0 1) self-organized surface. This template consists of nitrogen islands separated by bare Cu lines and forming a regular 2D array of period 5 nm. When Au is evaporated onto this surface, it mainly grows at the intersections between the Cu lines. The islands organization reproduces then the substrate 2D ordering.However, if the substrate temperature is too low, islands form everywhere. On the contrary, if the substrate temperature is too high, some nucleation sites are empty. By following the intensity of the diffraction satellites during the growth, we have observed that the ordering of the Au particles is optimum when the substrate temperature is between 210 and 290 K. Using both an analytical treatment based on the rate equations and kinetic Monte-Carlo simulations, we have determined the activation energy for the diffusion process and the energy of the traps.  相似文献   

15.
Scanning tunneling microscopy was used to compare the morphologies of Ru nanoparticles deposited onto highly-oriented graphite surfaces using two different physical vapour deposition methods; (1) pre-formed mass-selected Ru nanoparticles with diameters between 2 nm and 15 nm were soft-landed onto HOPG surfaces using a gas-aggregation source and (2) nanoparticles were formed by e-beam evaporation of Ru films onto HOPG. The particles generated by the gas-aggregation source are round in shape with evidence of facets resolved on the larger particles. Annealing these nanoparticles when they are supported on unsputtered HOPG resulted in the sintering of smaller nanoparticles, while larger particles remained immobile. Nanoparticles deposited onto sputtered HOPG surfaces were found to be stable against sintering when annealed. The size and shape of nanoparticles deposited by e-beam evaporation depend to a large extent on the state of the graphite support and the temperature. Ru deposition onto unsputtered HOPG is characterised by bimodal growth with large flat particles formed on the substrate terraces and smaller diameter particles aligned along the substrate steps. Evaporation onto sputtered HOPG results in the formation of 2 nm round particles with a narrow size distribution. Finally, thermal deposition onto both sputtered and unsputtered HOPG at 660 °C results in larger particles showing a flat Ru(0 0 0 1) top facet.  相似文献   

16.
Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Photoelectron Yield Spectroscopy (PYS) measurements have been used to monitor the interaction of gold (Au) deposits on InSe/Si(1 1 1) substrate. Au has been sequentially deposed under ultra-high vacuum onto 40 Å-thick film of layered semiconductor InSe which is epitaxially grown by molecular beam epitaxy (MBE) on a Si(1 1 1)1 × 1-H substrate and kept at room temperature. Au coverage varies from 0.5 monolayer to 20 monolayers (ML) (in terms of InSe atomic surface plane: 1 ML = 7.2 1014 at/cm2) which is corresponding to 1.30 Å of Au-metal. The Au/InSe/Si(1 1 1) system was characterized as function of Au deposit, we noticed an interaction at room temperature starts as an apparent intercalation process until 5 ML. Beyond this dose Au islands begin to form on the sample surface without interaction with InSe substrate, thus the interface is far from to be a simple junction Au-InSe.  相似文献   

17.
Gold in contact with silicon substrates Si(1 0 0), Si(1 1 1), and SiO2 is studied by thermal evaporation and annealing in N2 using the modified sphere-plate technique. The final orientation distribution of crystalline Au films grown on Si substrate systems that incorporate a native amorphous oxide layer of silica and Au on amorphous silica (SiO2 glass) substrates is influenced by preferred orientations and twinning. Experimental evidence suggests that the orientation of Au{1 1 1} close packed planes (multiply twinned) was found to be of low-energy as the annealing temperature was increased to 530 °C and 920 °C. Additional orientations were observed for Au{1 0 0} on Si(1 0 0) substrates and Au{1 0 0}, {1 1 0}, and {3 1 1} on SiO2 substrates. After annealing at 920 °C the size distribution of the gold particles was determined to be within the range of 20-800 nm while the morphology of gold surface appears spherical to faceted in character. These results show similarities to recent findings for smaller nano-size 1D particles, islands and thin Au films on silicon annealed over lower temperature ranges.  相似文献   

18.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system are fundamentally important from the viewpoint of device performance.We study interface electronic structure of iron thin film deposited on silicon (Si)- and carbon (C)-face of 4H-SiC(0 0 0 1) by using a soft X-ray emission spectroscopy (SXES). For specimens of Fe (50 nm)/4H-SiC (substrate) contact systems annealed at 700 and 900 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate depending on thermal-treated temperature. The product of materials such as silicides is suggested. Further, from comparison of Si L2,3 emission spectra between Si- and C-face for the same annealing temperature at 700 °C, it is concluded that the similar silicides and/or ternary materials are formed on the two surfaces. However for those of 900 °C, the film on substrate is composed of the different silicide and/or ternary materials.  相似文献   

19.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

20.
Gold nanoparticle arrays are fabricated for surface-enhanced Raman scattering (SERS) and the effect of the annealing temperature, the thickness of nanoparticle array and the exciting power on the SERS signals are investigated. The particle distribution and particle size are dense and uniform on the glass substrate when the 10 nm gold film was annealed at 250 °C and strong SERS signals for Rhodamine 6G were achieved via a 532 nm excitation with a 10 mW power. The SERS signal at 1650 cm−1 is enhanced more than 10 times as compared to that of the gold film without annealing. The strong SERS behavior of gold nanoparticle arrays may broaden the SERS applications in biomedical and analytical chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号