首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
王高峡  沈轶 《物理学报》2010,59(2):842-850
探讨了复杂网络的模块矩阵的正(负)特征谱与网络的社团结构(反社团结构)的关系,给出了反映网络社团结构性质的相关定义.利用模块矩阵的多个特征值与特征向量,引入反映个体对所处社团的依附程度一种结构中心化指标.利用人工网络与实际网络数据,将这种指标与几种经典的中心化指标进行了比较.结果表明该指标具有较好的分辨率并与度指标具有一定程度的相关性.  相似文献   

2.
基于簇相似度的网络社团结构探测算法   总被引:2,自引:0,他引:2       下载免费PDF全文
袁超  柴毅 《物理学报》2012,61(21):541-549
社团结构对复杂系统的结构特性和动力学特性有重要影响.提出了一个度量社团相似度的模型,称为簇相似度.该模型能够度量两个社团的相似度大小,为研究社团间的作用机制提供帮助.而且基于该模型,设计了一个社团划分算法.算法采用层次聚类的思想,每次合并两个相似度最大的社团,并通过一个评价函数选择最优社团划分.数值实验以及与CNM,GN,EigenMod等主流算法做比较,表明本算法的精度和效率都比较高,尤其对于边密度较高的网络,性能非常理想.  相似文献   

3.
沈毅  徐焕良 《物理学报》2010,59(9):6022-6028
提出了权重自相似性加权网络社团结构评判函数,并基于该函数提出一种谱分析算法检测社团结构,结果表明算法能将加权网络划分为同一社团内边权值分布均匀,而社团间边权值分布随机的社团结构.通过建立具有社团结构的加权随机网络分析了该算法的准确性,与WEO和WGN算法相比,在评判权重自相似的阈值系数取较小时,该算法具有较高的准确性.对于一个具有n个节点和c个社团的加权网络,社团结构检测的复杂度为O(cn2/2).通过设置评判权重自相似的阈值系数,可检测出能反映节点联系稳定性的层化性社团结构.这与传统意义上只将加权网络划分为社团中边权值较大而社团间边权值较小的标准不同,从另一个角度更好地提取了加权网络的结构信息.  相似文献   

4.
王兴元  赵仲祥 《物理学报》2014,63(17):178901-178901
本文提出了一种基于节点间依赖度的在复杂网络中划分社团结构的算法,定义了节点对其邻居的依赖度以及节点对社团的依赖度和条件依赖度.算法的基本要点是优先将最大依赖度不小于其他节点且有惟一依赖节点的节点划分到社团,并将对社团的依赖度或条件依赖度达到一定值的节点吸收进社团,直到所有节点都得到准确的社团划分.本算法在几个实际网络的测试上,都成功地划分出了满足条件的社团,并且对社团结构已知的网络的划分结果符合实际情况.  相似文献   

5.
常振超  陈鸿昶  刘阳  于洪涛  黄瑞阳 《物理学报》2015,64(21):218901-218901
发现复杂网络中的社团结构在社会网络、生物组织网络和在线网络等复杂网络中具备十分重要的意义. 针对社交媒体网络的社团检测通常需要利用两种信息源: 网络拓扑结构特征和节点属性特征, 丰富的节点内容属性信息为社团检测的增加了灵活性和挑战. 传统方法是要么仅针对这两者信息之一进行单独挖掘, 或者将两者信息得到的社团结果进行线性叠加判决, 不能有效进行信息源的融合. 本文将节点的多维属性特征作为社团划分的一种有效协同学习项进行研究, 将两者信息源进行融合分析, 提出了一种基于联合矩阵分解的节点多属性网络社团检测算法CDJMF, 提高了社团检测的有效性和鲁棒性. 实验表明, 本文所提的方法能够有效利用节点的属性信息指导社团检测, 具备更高的社团划分质量.  相似文献   

6.
丁益民*  丁卓  杨昌平 《物理学报》2013,62(9):98901-098901
本文运用复杂网络理论, 对我国北京、上海、广州和深圳等城市的地铁网络进行了实证研究. 分别研究了地铁网络的度分布、聚类系数和平均路径长度. 研究表明, 该网络具有高的聚类系数和短的平均路径长度, 显示小世界网络的特征, 其度分布并不严格服从幂律分布或指数分布, 而是呈多段的分布, 显示层次网络的特征. 此外, 它还具有重叠的社团结构特征. 基于实证研究的结果, 提出一种基于社团结构的交通网络模型, 并对该模型进行了模拟分析, 模拟结果表明, 该模型的模拟结果与实证研究结果相符. 此外, 该模型还能解释其他类型的复杂网络(如城市公共汽车交通网络)的网络特性. 关键词: 复杂网络 地铁网络 小世界 社团  相似文献   

7.
基于社团结构的负载传输优化策略研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邵斐  蒋国平 《物理学报》2011,60(7):78902-078902
研究表明网络社团结构特征对负载传输有影响,明显社团结构特征会降低网络的承载能力.由于最短路由策略在选择路由时有一定的随机性,本文提出了一种基于社团结构的负载传输策略,减少最短路由经过的社团数量,从而降低社团边缘节点的介数.实验结果显示,该策略在保证最短路由小世界特性的同时,提升了网络的承载能力,社团划分得越准确传输优化策略效果越显著. 关键词: 优化路由策略 社团结构 复杂网络 负载传输  相似文献   

8.
加权复杂网络社团的评价指标及其发现算法分析   总被引:3,自引:0,他引:3       下载免费PDF全文
节点的聚集现象是复杂网络的重要特性.以往研究主要发现无权复杂网络中的社团,较少涉及加权网络的社团发现.由于加权网络的复杂性远高于无权网络,一般认为加权网络的社团发现是一个较难的问题.本文基于统一的数据基础,从社团评价指标的有效性和现有算法的效果两个角度开展研究.首先,总结了加权网络三种常见的社团评估指标,并在社团大小、密度和局域特点均不同的模拟数据集上分析指标的有效性;其次,针对5个数据集,分析现有的3种加权复杂网络社团发现算法的效果.研究表明:上述指标无论在评价最基本的社团结构,还是在分析结构复杂的社团时都有较大缺欠;现有的加权网络社团发现算法的泛化能力不强.  相似文献   

9.
康玲  项冰冰  翟素兰  鲍中奎  张海峰 《物理学报》2018,67(19):198901-198901
复杂网络多影响力节点的识别可以帮助理解网络的结构和功能,具有重要的理论意义和应用价值.本文提出一种基于网络区域密度曲线的多影响力节点的识别方法.应用两种不同的传播模型,在不同网络上与其他中心性指标进行了比较.结果表明,基于区域密度曲线的识别方法能够更好地识别网络中的多影响力节点,选中的影响力节点之间的分布较为分散,自身也比较重要.本文所提方法是基于网络的局部信息,计算的时间复杂度较低.  相似文献   

10.
一种有效提高无标度网络负载容量的管理策略   总被引:2,自引:0,他引:2       下载免费PDF全文
蔡君  余顺争 《物理学报》2013,62(5):58901-058901
现有研究表明明显的社团结构会显著降低网络的传输性能. 本文基于网络邻接矩阵的特征谱定义了链路对网络社团特性的贡献度, 提出一种通过逻辑关闭或删除对网络社团特性贡献度大的链路以提高网络传输性能的拓扑管理策略, 即社团弱化控制策略(CWCS 策略). 在具有社团结构的无标度网络上分别进行了基于全局最短路径路由和局部路由的仿真实验, 并与关闭连接度大的节点之间链路的HDF 策略进行了比较. 仿真实验结果显示, 在全局最短路径路由策略下, CWCS策略能更有效地提高网络负载容量, 并且网络的平均传输时间增加的幅度变小. 在局部路由策略下, 当调控参数0<α<2, 对网络负载容量的提升优于HDF策略. 关键词: 复杂网络 社团特性 负载容量 拓扑管理  相似文献   

11.
Community detection is of considerable interest for analyzing the structure and function of complex networks. Recently, a type of multi-resolution methods in community detection was introduced, which can adjust the resolution of modularity by modifying the modularity function with tunable resolution parameters, such as those proposed by Arenas, Fernández and Gómez and by Reichardt and Bornholdt. In this paper, we show that these methods still have the intrinsic limitation–large communities may have been split before small communities become visible–because it is at the cost of the community stability that the enhancement of the modularity resolution is obtained. The theoretical results indicated that the limitation depends on the degree of interconnectedness of small communities and the difference between the sizes of small communities and of large communities, while independent of the size of the whole network. These findings have been confirmed in several example networks, where communities even are full-completed sub-graphs.  相似文献   

12.
To find the fuzzy community structure in a complex network, in which each node has a certain probability of belonging to a certain community, is a hard problem and not yet satisfactorily solved over the past years. In this paper, an extension of modularity, the fuzzy modularity is proposed, which can provide a measure of goodness for the fuzzy community structure in networks. The simulated annealing strategy is used to maximize the fuzzy modularity function, associating with an alternating iteration based on our previous work. The proposed algorithm can efficiently identify the probabilities of each node belonging to different communities with random initial fuzzy partition during the cooling process. An appropriate number of communities can be automatically determined without any prior knowledge about the community structure. The computational results on several artificial and real-world networks confirm the capability of the algorithm.  相似文献   

13.
The problem of dividing a network into communities is extremely complex and grows very rapidly with the number of nodes and edges that are involved. In order to develop good algorithms to identify optimal community divisions it is extremely beneficial to identify properties that are similar for most networks. We introduce the concept of modularity density, the distribution of modularity values as a function of the number of communities, and find strong indications that the general features of this modularity density are quite similar for different networks. The region of high modularity generally has very low probability density and occurs where the number of communities is small. The properties and shape of the modularity density may give valuable information and aid in the search for efficient algorithms to find community divisions with high modularities.  相似文献   

14.
Hao Long 《Physics letters. A》2019,383(11):1167-1173
Community is the dominant structure of complex networks. In recent years, community detection has become a heavily researched issue in network science, and many algorithms have been proposed to solve it. However, how to evaluate these algorithms and measure the strength of community structures is still an open problem. The modularity, as well as many of its variants, is widely used for this purpose, and maximizing such metrics is also a main approach to uncover communities, but this technique has a resolution limit problem in some cases, which means larger structures are favored over smaller ones. In this paper, we define the edge intensity to measure local density of network and propose an intensity-based measurement to support community evaluation; with an additional constraint the proposed measurement would also support multiresolution investigation of the networks. Experimental results on synthetic and real networks illustrate that the maximization of the new metric further reduces the resolution limit problem, and the maximization of the restricted intensity-based measurement provides multiresolution details of the investigated networks.  相似文献   

15.
Community structure is an important feature in many real-world networks, which can help us understand structure and function in complex networks better. In recent years, there have been many algorithms proposed to detect community structure in complex networks. In this paper, we try to detect potential community beams whose link strengths are greater than surrounding links and propose the minimum coupling distance (MCD) between community beams. Based on MCD, we put forward an optimization heuristic algorithm (EAMCD) for modularity density function to welded these community beams into community frames which are seen as a core part of community. Using the principle of random walk, we regard the remaining nodes into the community frame to form a community. At last, we merge several small community frame fragments using local greedy strategy for the modularity density general function. Real-world and synthetic networks are used to demonstrate the effectiveness of our algorithm in detecting communities in complex networks.  相似文献   

16.
Xu Liu  Qiang LuoDong-Yun Yi 《Physica A》2012,391(4):1797-1810
Decomposing a network into small modules or communities is beneficial for understanding the structure and dynamics of the network. One of the most prominent approaches is to repeatedly join communities together in pairs with the greatest increase in modularity so that a dendrogram that shows the order of joins is obtained. Then the community structure is acquired by cutting the dendrogram at the levels corresponding to the maximum modularity. However, there tends to be multiple pairs of communities that share the maximum modularity increment and the greedy agglomerative procedure may only merge one of them. Although the modularity function typically admits a lot of high-scoring solutions, the greedy strategy may fail to reach any of them. In this paper we propose an enhanced data structure in order to enable diverse choices of merging operations in community finding procedure. This data structure is actually a max-heap equipped with an extra array that stores the maximum modularity increments; and the corresponding community pairs is merged in the next move. By randomly sampling elements in this head array, additional diverse community structures can be efficiently extracted. The head array is designed to host the community pairs corresponding to the most significant increments in modularity so that the modularity structures obtained out of the sampling exhibit high modularity scores that are, on the average, even greater than what the CNM algorithm produces. Our method is tested on both real-world and computer-generated networks.  相似文献   

17.
Fuzzy analysis of community detection in complex networks   总被引:1,自引:0,他引:1  
Dawei Zhang  Yong Zhang  Kaoru Hirota 《Physica A》2010,389(22):5319-5327
A snowball algorithm is proposed to find community structures in complex networks by introducing the definition of community core and some quantitative conditions. A community core is first constructed, and then its neighbors, satisfying the quantitative conditions, will be tied to this core until no node can be added. Subsequently, one by one, all communities in the network are obtained by repeating this process. The use of the local information in the proposed algorithm directly leads to the reduction of complexity. The algorithm runs in O(n+m) time for a general network and O(n) for a sparse network, where n is the number of vertices and m is the number of edges in a network. The algorithm fast produces the desired results when applied to search for communities in a benchmark and five classical real-world networks, which are widely used to test algorithms of community detection in the complex network. Furthermore, unlike existing methods, neither global modularity nor local modularity is utilized in the proposal. By converting the considered problem into a graph, the proposed algorithm can also be applied to solve other cluster problems in data mining.  相似文献   

18.
Zhihao Wu  Youfang Lin 《Physica A》2012,391(7):2475-2490
The detection of overlapping community structure in networks can give insight into the structures and functions of many complex systems. In this paper, we propose a simple but efficient overlapping community detection method for very large real-world networks. Taking a high-quality, non-overlapping partition generated by existing, efficient, non-overlapping community detection methods as input, our method identifies overlapping nodes between each pair of connected non-overlapping communities in turn. Through our analysis on modularity, we deduce that, to become an overlapping node without demolishing modularity, nodes should satisfy a specific condition presented in this paper. The proposed algorithm outputs high quality overlapping communities by efficiently identifying overlapping nodes that satisfy the above condition. Experiments on synthetic and real-world networks show that in most cases our method is better than other algorithms either in the quality of results or the computational performance. In some cases, our method is the only one that can produce overlapping communities in the very large real-world networks used in the experiments.  相似文献   

19.
Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.  相似文献   

20.
Agglomerative clustering is a well established strategy for identifying communities in networks. Communities are successively merged into larger communities, coarsening a network of actors into a more manageable network of communities. The order in which merges should occur is not in general clear, necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering algorithm based on a local optimality property. For each edge in the network, we associate the modularity change for merging the communities it links. For each community vertex, we call the preferred edge that edge for which the modularity change is maximal. When an edge is preferred by both vertices that it links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal edges that would increase the modularity, redetermining the locally optimal edges after each step and continuing so long as the modularity can be further increased. We apply the algorithm to model and empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We relate the performance and implementation details to the structure of the resulting community hierarchies. We additionally consider a complementary local clustering algorithm, describing how to identify overlapping communities based on the local optimality condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号