首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
马彬  饶秋华  贺跃辉  王世良 《物理学报》2013,62(17):176103-176103
利用分子动力学方法, 对本课题组率先采用金属催化的气相合成法制备出的高纯度单晶钨纳米线进行拉伸变形数值模拟, 通过分析拉伸应力-应变全曲线及其微观变形结构, 揭示出单晶钨纳米线的拉伸变形特征及微观破坏机理. 结果表明: 单晶钨纳米线的应力-应变全曲线可分为弹性阶段、损伤阶段、相变阶段、强化阶段、 破坏阶段等五个阶段, 其中相变是单晶钨纳米线材料强化的重要原因; 首次应力突降是由于局部原子产生了位错、孪生等不可逆变化所致; 第二次应力突降是发生相变的材料得到强化后, 当局部原子再次产生位错导致原子晶格结构彻底破坏而形成裂口、且裂口不断发展成颈缩区时, 材料最终失去承载能力而断裂. 计算模拟得到的单晶钨纳米线弹性模量值与实测值符合较好. 关键词: 分子动力学 应力应变曲线 微观机理 单晶钨纳米线  相似文献   

2.
用有限元方法模拟了非均匀叠层材料的固体力学行为和破坏过程,各层材料性质的初始非均匀性采用某一给定的统计规则描述.用三维网格对试件进行有限元剖分,每个单元具有各自的均匀各向同性常量以反映总体的非均匀性.加载过程中不同单元破坏次序不同,因而整体等效应力应变关系表现出复杂的非线性性.通过数值计算,在选定的具体条件下,模拟了在逐步加载过程中,叠层材料应力应变场的变化和不同单元依次破坏直至试件整体破坏的过程.算例中叠层材料由14~15层构成,使用的网格数约为几千个.用该方法得到的非线性等效应力应变曲线与文[11,12]中叙述的拉伸作用下应变超过某一值后,材料发生应变软化现象的试验数据符合较好,趋势相当一致,因此可以设想是对应变软化原因的一种解释.  相似文献   

3.
非晶态玻璃态高分子材料作为结构材料在工程领域应用广泛,其机械力学性能特别是屈服变形行为受到热处理、加载应变率和环境温度的影响.采用分子动力学模拟方法研究非晶态玻璃态高分子材料不同工况下的单轴拉伸变形,基于分子链缠结微结构的概念,阐明了非晶态玻璃态高分子材料屈服和应变软化过程的内在变形机制.结果表明,拓扑缠结具有较为稳定的空间结构,难以发生解缠,决定了非晶态高分子材料屈服后的软化平台.由相邻分子链的局部链段相互作用形成的次级缠结在一定外界条件下可发生破坏或重新生成,次级缠结微结构及其演化是非晶态高分子材料发生屈服及软化的内在物理原因.  相似文献   

4.
 采用位错理论和分子动力学模拟研究了金属原子性质对其宏观应变率敏感性的影响。依据位错运动的Orowan关系,认为金属中位错速度对应力的依赖关系是此研究的关键,并分析提出研究金属原子性质与应变率敏感性关系的分析方法。构建了一个中等规模的二维分子动力学模型,应用此模型对单个位错在FCC金属中的运动进行模拟。综合位错理论分析和分子动力学模拟结果得出结论:影响金属应变率敏感性的原子性质是其原子量而不是其原子势。依据此结论分析得到的FCC金属应变率敏感性排序与试验结果相符。  相似文献   

5.
陈军  徐云  陈栋泉  孙锦山 《物理学报》2008,57(10):6437-6443
本文利用多尺度方法研究了包含孔洞金属材料在冲击加载条件下的动力学行为. 该多尺度方法结合了分子动力学和有限元方法,分子动力学方法运用于局部缺陷区域,而有限元方法运用于整个模型区域,两种方法之间使用桥尺度函数进行连接. 计算结果既包括了系统宏观的物理信息,如应变场、应力场、温度场等,也得到了微观原子的物理信息,如原子能量和位置坐标等. 结合以上的模拟结果,发现孔洞的坍塌与材料屈服强度和冲击强度有关,而孔洞坍塌和坍塌过程中对微喷射原子的压缩过程是形成局部热点的主要原因. 同时也发现孔洞坍塌形成的位错和局部热点可以导致局部绝热剪切带更容易形成. 关键词: 微孔洞 热点 冲击加载 多尺度方法  相似文献   

6.
单晶铜在动态加载下空洞增长的分子动力学研究   总被引:7,自引:0,他引:7       下载免费PDF全文
冲击载荷下延性材料的损伤是材料中微空洞的产生和长大演化的结果.利用分子动力学模拟 方法对延性金属单晶铜中单个空洞在动态加载下的演化发展进行了研究,得到了空洞增长过 程中的应力分布及空洞增长演化随冲击强度变化的规律.模拟结果表明,动态加载下的前期 压缩过程对后期拉伸应力场作用下的空洞增长演化特征有不可忽视的影响,微空洞增长的阈 值则与单晶实验中层裂强度随拉伸应力作用时间减少而增加的趋势相一致. 关键词: 层裂 分子动力学 动态加载 空洞  相似文献   

7.
在光电子学应用中,器件性能主要取决于半导体纳米材料中的光生载流子动力学过程. 但是,受反应速率、材料表面积、材料组成等多种因素影响,描述其中的动力学过程非常具有挑战性. 模拟光生载流子动力学过程可以通过绝热分子动力学方法实现,即求解包含非绝热耦合项的含时薛定谔方程. 在众多绝热分子动力学方法中,面跳跃方法出色地平衡了计算精度和计算成本,因而成为描述半导体纳米材料中不同非绝热过程间竞争的有力工具,已被用来模拟材料中的超快动力学过程和其他复杂效应,如Janus过渡金属二硫族化合物范德华异质结中的电荷分离. 本综述通过介绍该领域代表性的理论及实验工作,阐述了光生载流子对半导体纳米材料性能的重要影响,以及面跳跃方法在描述其动力学行为中的重要作用. 由于日趋复杂的材料体系对理论工作提出了巨大的挑战,本综述重点介绍了最近用于模拟这些复杂材料的一些开创性的新方法,包括高精度的电子结构方法和与之相结合的绝热分子动力学方法.  相似文献   

8.
铁的α?ε相变是金属高压相变研究领域的经典范例,随着测试技术的进步,其相变机制与动力学研究不断深入,基于激光加载的原位X射线观察结合非平衡分子动力学模拟研究是解决该问题最有效的手段之一。为此,综述了铁在动态载荷下塑性与相变的原子模拟研究进展,综合分析了铁的高压势函数,平面应变加载下晶体的各向异性、冲击强度、应变率、应变梯度、各种初始晶体缺陷等对铁相变机制的影响,以及铁的相变与层裂,同时报道了铁在非平面加载下响应规律研究的最新进展,最后进行了归纳总结和展望。  相似文献   

9.
 本文用分子动力学方法研究了高应变率下晶体材料的力学行为。在冲击加载下,晶体材料中产生了位错和塑性变形。在强冲击时还可出现相变变化。在讨论应变率变化时,获得了屈服强度随应变率增大而增高的结果。  相似文献   

10.
 采用半圆盘弯曲实验和数字散斑相关方法,对高聚物粘结炸药(PBX)的宏、细观断裂行为进行了实验研究。宏观上,带有预制裂纹的半圆盘试样发生拉伸破坏,利用数字散斑相关技术得到了试样的应变场和位移矢量场分布,定量分析了试样全场的变形特征,并测得了PBX材料的平面应变断裂韧性;细观上,用配有加载装置的扫描电子显微镜对含预制裂纹的半圆盘试样间接拉伸下的损伤演化和破坏过程进行了实时原位观察,借助于数字散斑相关方法,定量分析了试样损伤局部化特征。结果表明,将数字散斑相关方法用于研究PBX材料宏、细观尺度上的变形破坏问题是有效的。  相似文献   

11.
In this study, strain rate effects on the compressive mechanical properties of randomly structured carbon nanotube (CNT) networks were examined. For this purpose, three-dimensional atomistic models of CNT networks with covalently-bonded junctions were generated. After that, molecular dynamics (MD) simulations of compressive loading were performed at five different strain rates to investigate the basic deformation characteristic mechanisms of CNT networks and determine the effect of strain rate on stress–strain curves. The simulation results showed that the strain rate of compressive loading increases, so that a higher resistance of specimens to deformation is observed. Furthermore, the local deformation characteristics of CNT segments, which are mainly driven by bending and buckling modes, and their prevalence are strongly affected by the deformation rate. It was also observed that CNT networks have superior features to metal foams such as metal matrix syntactic foams (MMSFs) and porous sintered fiber metals (PSFMs) in terms of energy absorbing capabilities.  相似文献   

12.
A new approach is developed to measure the dynamic characteristics of metal sheet under laser shock,including deformation velocity,strain,and strain rate.The detecting laser beam is partially shaded by the target deformation induced by the laser action.A photodiode transforms the received beam intensity real time into an electrical signal which could record the process of the target deformation.The functional relation between the electrical signal and the deformation of the metal sheet is derived.The deformation curve of a thin aluminum and the velocity curve of its deformation are also obtained during the exper-iment.The results indicate that the average velocity of the elastic deformation of the target can reach 2.999×10 3 m/s in the central area.This new method provides an approach in the study of the effect of strain rate on deformation.  相似文献   

13.
The dynamical interaction between columnar interface microstructure and self-stress, resulting in unforeseen mechanical deformation phenomena, is brought to light by means of in situ and real-time synchrotron x-ray topography during directional solidification of dilute aluminum alloys. Beyond long-known local mechanical stresses, global mechanical constraints are found to be active. In particular, column rotation results from deformation caused by the mechanical moments associated with the very growth shape, namely, the cumulative torque acting together with the cumulative bending moment under gravity. A basic model allowing for a qualitative explanation of the observed distinctive features of the self-stress effects on microstructure dynamics is proposed.  相似文献   

14.
Jiaqian Li 《Molecular physics》2013,111(14):2144-2156
The mechanical properties and failure process of single-walled carbon nanotube (SWCNT) under combined electric field and tensile loading are investigated using the semi-empirical quantum mechanical method. The local and global structural deformation and variation of mechanical properties of SWCNT under different directions and intensity of external electric field are discussed systematically. It is shown that the electric field induced deformation in the radial and axial directions of the SWCNT are strongly dependent on the direction of electric field. The analysis of mechanical properties shows that the structure stiffness, tensile strength and failure strain of the SWCNT all decrease with the increase of the field intensity, which is particularly evident under the longitudinal electric field. The Young's modulus of SWCNTs vary with the tube diameter and are affected by the electric field. The increase of the length of the tubes intensifies the charge concentration at the tube ends under the electric field and lead to the decrease of mechanical properties of SWCNTs. The failure process of SWCNTs under the coupling effect of electric field and tensile loading is found to be controlled by the field strength and also affected by the electric charge accumulation.  相似文献   

15.
The mechanism of neural activity detection using the surface plasmon resonance (SPR) phenomenon was theoretically explored in this paper. Investigating the mechanism of SPR neural recordings has been difficult due to the complex relationship between different physiological and physical processes such as excitation of a nerve fiber and coherent charge fluctuations on the metal surface. This paper examines how these different processes may be connected by introducing a set of compartmental theoretical models that deal with the molecular scale phenomena; Poisson-Boltzmann (PB) equation, which was used to describe the ion concentration change under the time varying electrostatic potential, Drude-Lorentz electron model, which was used to describe electron dynamics under the time varying external forces, and a Fresnel's three-layered model, which expresses the reflectivity of the SPR system in terms of the dielectric constants. Each physical theoretical model was numerically analyzed using the finite element method (FEM) formulated for the PB equation and the Green's method formulated for the Drude-Lorentz electron equation. The model predicts that the ionic thermal force originating from the opening of the K+ ion channel is fundamental for modifying the dipole moment of the gold's free electron; thus, the reflectivity is changed in the SPR system. The discussion was done also on important attributes of the SPR signal such as biphasic fluctuation and the electrical noise-free characteristics.  相似文献   

16.
In a laser forming process, different forming mechanisms have different deformation behaviors. The aim of laser forming is to acquire plane strain under an upsetting mechanism, while a plate undergoes a small bending deformation. In some industrial applications, the bending strain should not occur. To achieve high-precision forming, the deformation behaviors of a metal plate when an upsetting mechanism plays a dominant role are studied in the paper. Several heating methods are proposed to reduce the plane strain difference along the thickness direction and little bending deformation resulting from a small temperature difference between the top and bottom surfaces of the plate. The results show that negligible bending deformation and a uniform plastic plane strain field can be obtained by simultaneously heating the top and bottom surfaces with the same process parameters. A conventional scanning method needs a larger spot diameter and slower scanning speed under the upsetting mechanism, but a smaller spot diameter and quicker scanning speed may be selected using the simultaneous heating method, which can greatly widen the potential scope of process parameters.  相似文献   

17.
李胜波  闫辉  姜洪源  陈亮 《物理学报》2012,61(1):10702-010702
针对金属橡胶构件的非线性特性及结构不同时弹性阻尼力学性能不同的特点, 利用实验和理论相结合的方法建立了金属橡胶构件迟滞回线边界变形过程力学模型, 推导了不同相对密度金属橡胶构件非线性迟滞恢复力表达式. 分析了简谐激励载荷作用下金属橡胶阻尼环动力学特性, 对该阻尼环进行了实验研究, 研究了存在预变形情况下阻尼环的弹性阻尼性能, 实验和理论分析结果基本一致, 为该种阻尼环的实际应用奠定了理论基础. 关键词: 金属橡胶构件 力学模型 非线性迟滞恢复力  相似文献   

18.
Y. Higo  T. Kodaka  S. Kimoto 《哲学杂志》2013,93(21-22):3205-3240
Since strain localization is a precursor of failure, it is an important subject to address in the field of geomechanics. Strain localization has been analysed for geomaterials by several researchers. Many of the studies, however, treated the problems brought about by strain localization as two-dimensional problems, although the phenomena are generally three-dimensional. In the present study, undrained triaxial compression tests using rectangular specimens and their numerical simulation are conducted in order to investigate the strain localization behaviour of geomaterials under three-dimensional conditions. In the experiments, both normally consolidated and over-consolidated clay samples are tested with different strain rates. Using the distribution of shear strain obtained by an image analysis of digital photographs taken during deformation, the effects of the strain rates, the dilation, and the over-consolidation on strain localization are studied in detail. The analysis method used in the numerical simulation is a coupled fluid-structure finite element method. The method is based on the finite deformation theory, in which an elasto-viscoplastic model for water-saturated clay, which can consider structural changes, is adopted. The results of the simulation include not only the distribution of shear strain on the surfaces of the specimens, but also the distributions of strain, stress, and pore water pressure inside the specimens. Through a comparison of the experimental results and the simulation results, the mechanisms of strain localization are studied under three-dimensional conditions.  相似文献   

19.
Using aluminum as an example it is experimentally established that strain accumulation under low-stability condition at the temperatures higher than 0.5 melting temperature exhibits a non-monotonic behavior and represents sharp deformation changes within a wide range of scale levels (including macroscale). The effects of this stepwise deformation are accompanied by high-amplitude acoustic emission signals. An analysis of the anomalous metal behavior and acoustic emission shows that the activation volume of an elementary deformation event under this low-stability state is exponentially increased with the deformation temperature, indicating an increased scale of cooperative atomic displacements and manifestation of low stability of the crystal lattice of this atomic configuration. The macroscopic character of this stepwise deformation provides evidence on a correlation between elementary deformation events within a volume larger than one strain band. It is assumed that the amplitude of an acoustic signal can serve a criterion of this correlation.  相似文献   

20.
A method with space-time resolution Δr∼ μm and δt∼0.1 μs is proposed for investigating the kinetics of angstrom-size displacements and deformations induced on solid surfaces by local irradiation with a laser pulse. The instantaneous deformation profiles were recorded at a set of points on the surface on micron-size scales by the method of photothermal deformation of the surface (PTDS) according to the kinetics of the deflection of a probe laser beam followed by extraction of data corresponding to the same moment in time; the instantaneous displacement profiles were obtained by integrating the instantaneous deformation profiles numerically in the radial direction. Instantaneous profiles obtained in this manner for angstrom-scale deformations and displacements are presented for a number of metal samples. The nature of the kinetic displacements obtained at the center of an ∼10–100 μm heating laser spot is discussed. Zh. Tekh. Fiz. 67, 105–109 (February 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号