首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission of ions from laser-produced carbon plasmas is investigated by a deconvolution of ion collector signals. The deconvolution is based on the use of Kelly and Dreyfus function expressing the time-resolved ion current to recover hidden peaks in an ion collector signal. The parameters of recovered C q+ (1?≤?q?≤?6) currents make possible the quantification of properties of laser-produced plasmas. The drift and peak velocities of C q+ ions, the abundance of ions and the plasma temperature are presented in the dependence on focused laser beam energy. The carbon plasma was generated employing either single 9-ns pulses of second harmonics (532 nm) of Nd:YAG laser or pulses repeated at a stable repetition rate of 30 Hz.  相似文献   

2.
《Physics letters. A》1999,255(3):187-190
A scanning near-field cathodoluminescence microscope (SNCLM) is successfully used to image the cathodoluminescence of an Si+ implanted and thermally annealed submicronic SiO2 layer. Owing to the subwavelength resolution of the system a “cross-sectional” cathodoluminescence image was obtained. The intensity image profile shows that sample luminescence results from the whole SiO2 layer confirming a preceding electroluminescence study. Sample luminescence is attributed to point defects generated into the whole SiO2 layer during Si+ ion implantation and thermal annealing.  相似文献   

3.
Abstract

The amorphization process of GaP by ion implantation is studied. The samples of 〈111〉 oriented GaP were implanted at 130 K with various doses 5 × 1013-2 × 1016 cm?2 of 150 keV N+ ions and with the doses of 6 × 1012-1.5 × 1015 cm?2 of 150 keV Cd+ ions. Room temperature implantations were also performed to see the influence of temperature on defect production. Rutherford backscattering and channelling techniques were used to determine damage in crystals. The damage distributions calculated from the RBS spectra have been compared with the results of Monte-Carlo simulation of the defect creation.

The estimated threshold damage density appeared to be independent on ion mass and is equal 6.5 × 1020 keV/cm3. It is suggested that amorphization of GaP is well explained on the basis of a homogenous model.  相似文献   

4.
The effect of silicon ion implantation on the optical reflection of bulk polymethylmethacrylate (PMMA) was examined in the visible and near UV. A low-energy (30 and 50 keV) Si+ beam at fluences in the range from 1013 to 1017 cm−2 was used for ion implantation of PMMA. The results show that a significant enhancement of the reflectivity from Si+-implanted PMMA occurs at appropriate implantation energy and fluence. The structural modifications of PMMA by the silicon ion implantation were characterized by means of photoluminescence and Raman spectroscopy. Formation of hydrogenated amorphous carbon (HAC) layer beneath the surface of the samples was established and the corresponding HAC domain size was estimated.  相似文献   

5.
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol–gel method was investigated. These BFO samples were implanted by 15.8?MeV ions of Au5+ at various ion fluence ranging from 1?×?1014 to 5?×?1015?ions/cm2. Effect of Au5+ ions’ implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds’ formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8?MeV Au5+ ions at a fluence of 5?×?1015?ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8?MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.  相似文献   

6.
The spatio-temporal evolution of the silicon monoxide SiO plasma produced by a high-power CO2 pulsed laser has been investigated using optical emission spectroscopy (OES) and imaging methods. The formed plasma was found to be strongly ionized, yielding Si+, O+, Si2+, O2+ and Si3+ species, rich in neutral silicon and oxygen atoms, and very weak molecular bands of SiO time-integrated and time-resolved two-dimensional OES plasma profiles were recorded as a function of emitted wavelength and distance from the target. The temporal behavior of specific emission lines of Si, Si+, O+, Si2+ and O2+ was characterized. The results show a faster decay of O2+ and Si2+ than that of O+, Si+ and Si. The Stark broadening of isolated single-ionized silicon emission lines was employed for deducing the electron density during the plasma expansion. The relative intensities of two Si2+ lines were used to calculate the time evolution of the plasma temperature.  相似文献   

7.
This article presents measurements which combine modelocking technique with intracavity spectroscopy. To test this approach, a sample (10–5 m ethanolic solution of 1,4-dihydroxyanthranquinone) was inserted in a modelocked Ar+ ion laser and probed by intracavity pulses of a synchronously pumped dye laser. The probing of the sample results in an amplification of the dye laser output. Maximum output was measured if the pulses of the dye laser temporally overlapped with those of the Ar+ ion laser inside the sample. Under this condition, the spectral laser intensity was shaped by the spectrum of stimulated fluorescence which originated from a molecular vibronic state populated by pump laser excitation.Presented at LASERION '91, June 12–14, 1991, München (Germany)  相似文献   

8.
A radio-frequency (RF) ion trap has been constructed for high resolution laser spectroscopy of metallic ions. Ions in externally generated laser plasma have been directly introduced into the RF ion trap. An Nd:YAG laser is used to vaporize and ionize sample metals placed behind a ring electrode. Both hyperbolic and cylindrical electrodes are successfully used for confinement of the ions. Trapped ions are detected either with a quadrupole mass spectrometer or with a photomultiplier for the measurement of laser-induced fluorescence. Metallic ions such as Ca+, Ba+, La+, Nd+, Tm+, Lu+, and Ta+ have been confined for the time range of several to 20 minutes in the presence of He buffer gas, and a doubly charged ion Ba2+ for several seconds. Some ions like Nd+, Lu+, Hf+, and Ta+ are found to be highly reactive with background gaseous molecules.  相似文献   

9.
The effect of high doses on p-and n-type silicon samples implanted with Fe+ ions under steady-state conditions (implantation energy, 100 keV; ion current density, 0.6–0.8 μA/cm2; irradiation dose, 1014–1016 ions/cm2) is investigated using Si L 2, 3 x-ray emission spectroscopy (the 3d3s → 2p electronic transition). An analysis of the Si L x-ray emission spectra of the silicon samples is performed by comparison with the spectra of reference materials and the spectra of silicon samples implanted with Fe+ ions in a pulsed mode. The Si L x-ray emission spectra are simulated by the molecular dynamics and full-potential linearized augmented-plane-wave (FLAPW) methods. It is revealed that the effect of high doses under steady-state conditions of Fe+ ion implantation into the semiconductor crystal matrix exhibits specific features: the disordering of the structure and partial amorphization of the sample from the surface deep into the bulk are more pronounced than those observed under conditions of pulsed ion implantation, although virtually no recrystallization of the sample at the threshold dose occurs. The most probable origins and mechanisms of the effect of high doses on the samples under investigation are discussed.  相似文献   

10.
Summary We report room temperature time-resolved photoluminescence (PL) and temperature dependence of continuous wave (cw) PL studies of high fluence (from 3·1016 to 3·1017 cm−2) Si+-implanted thermal SiO2 layers after annealing at high temperature (T=1000°C). Such measurements were related to TEM analysis of samples. Nancocrystals were observed at TEM only a samples implanted at higher fluence. In these samples a near infrared PL signal peaked at approximately 1.5 eV with decay time of about 100 μs is present. Besides, in all samples a light emission is present in the green region of the spectrum. The intensity of the emission shows large variations with ion fluence, and is characterized by 0.4, 2 and 7 ns decay times. Paper presented at the III INSEL (Incontro Nazionale sul Silicio Emettitore di Luce) Torino, 12–13 October 1995.  相似文献   

11.
The amorphization of crystalline Si (100) under 125 keV O+ ion implantation is investigated in the fluence range 1×1014 ions/cm2 to 1×1016 ions/cm2. The microstructure of the O+ implanted Si is modeled from ellipsometric data using a two phase, multilayer model within Bruggeman effective medium approximation (BEMA). The transition from the crystalline to the amorphous phase is found to be smooth and progressive. From a detailed analysis of the moments of the dielectric spectra and laser Raman spectroscopy, we infer that the amorphization occurs through a progressive disruption of long-range order caused by the overlap of amorphous nanozones. The dielectric spectrum of the fully amorphous phase is characterized using the Forouhi-Bloomer interband model.  相似文献   

12.
G. L. Du  G. Q. Li  S. Z. Zhao  T. Li  X. Li 《Laser Physics》2010,20(1):209-211
This work, for the first time to our knowledge, reports continuous-wave laser oscillation at 1.06 μm in Nd:YVO4 planar waveguide formed by 3.0 MeV Si+ ion implantation at a dose of 1 × 1015 ions/cm2 at room temperature. The effective refractive indices of the waveguide propagation modes were measured by using a prism-coupling method after the annealing at 240°C for 60 min in air. The performance of the waveguide laser has been studied in terms of the threshold pump power and slope efficiency. The laser outputs show a very high stability operating in cw regime at room temperature.  相似文献   

13.
Femtosecond-laser spectroscopy is used to study the photoionization and photofragmentation of large neutral silicon clusters in a beam. Silicon clusters Sin with sizes up to n≈6000, corresponding to nanoparticles with diameters up to 6 nm, are generated in a laser vaporization source. Nanosecond- and femtosecond-laser ionization are employed to characterize the free silicon nanoparticles. Excitation with intense femtosecond-laser pulses leads to prompt formation of doubly and triply charged Sin clusters. Additionally, strong fragmentation of charged clusters occurs by Coulomb explosion, resulting in high released kinetic energies. Multiply charged atoms up to Si4+ with initial kinetic energies in the range of 500 eV are observed for laser intensities of about 1013 W/cm2. Pump–probe spectroscopy yields decay times of the intermediate resonances of the nanoparticles. Received: 22 January 2000 / Published online: 7 August 2000  相似文献   

14.
Total ionizing dose effects of Si^+ ion implanted thermal oxides are studied by 10keV x-ray irradiation. Photoluminescence (PL) method is engaged to investigate nanostructures of samples. Ar^+ implanted samples are also studied by the same way to provide a comparison. The results show that Si^+ implantation following with high temperature annealing can significantly reduce the radiation induced flatband shift, which is caused by net posi- tive charge accumulation in oxides. This reduction is attributed to the formation of Si nanoscale structures. Ar^+ implantation is also found to reduce the radiation induced flatband shift, while it is different that the reduction with Si^+ implantation shows little dependence on implant dose of Ar^+ ions. This is explained by possible increase of recombination centres.  相似文献   

15.
The sequence of structural-phase changes in the surface layer of molybdenum during pulsed implantation of N+, C+, and Si+ ions has been studied. At radiation doses 5·1016 cm–2 we detected qualitatively similar structural-phase transformations with the formation of highly dispersed secondary-phase particles (nitrides, carbides, and silicides), dislocations, point defects, and clusters of defects. At radiation doses (1–2)·1017 cm–2 implantation of C+ and Si+ ions causes amorphization of the surface layer; nitrogen implantation is accompanied by the formation of continuous layers of the nitride phase on the surface.Siberian Physicotechnical Institute at the V. D. Kuznetsov State University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 3–9, February, 1994.  相似文献   

16.
Ar+ and He+ ions were implanted into Ge samples with (1 0 0), (1 1 0), (1 1 1) and (1 1 2) orientations at 15 K with fluences ranging from 1×1011 to 1×1014 cm−2 for the Ar+ ions and fluences ranging from 1×1012 to 6×1015 cm−2 for the He+ ions. The Rutherford backscattering (RBS) technique in the channelling orientation was used to study the damage built-up in situ. Implantation and RBS measurements were performed without changing the target temperature. The samples were mounted on a four axis goniometer cooled by a close cycle He cryostat. The implantations were performed with the surface being tilt 7° off the ion beam direction to prevent channelling effects. After each 300 keV Ar+ and 40 keV He+ implantation, RBS analysis was performed with 1.4 MeV He+ ions.For both the implantation ions, there is about no difference between the values found for the damage efficiency per ion for the four different orientations. This together with the high value (around 5 times higher than that found in Si), gives rise to the assumption of amorphous pocket formation per incident ion, i.e. direct impact amorphization, already at low implantation fluences. At higher fluences, when collision cascades overlap, there is a growth of the already amorphized regions.  相似文献   

17.
The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate have been investigated. Thomson parabola technique was employed to measure the energy and flux of carbon ions. The magnetic field of strength 80?mT was applied on the graphite plasma plume to provide an appropriate trajectory to the generated ions. The energy of carbon ions is 678?KeV for laser fluence of 5.1?J/cm2 which was kept constant for all exposures. The flux of ions varies from 32?×?1011 to 72?×?1014?ions/cm2 for varying numbers of laser pulses from 3000 to 12,000. In order to explore the ion irradiation effects on brass, four brass substrates were irradiated by carbon ions of different flux. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) are used to analyze the surface morphology and crystallographic structure of ion-implanted brass, respectively. SEM analysis reveals the formation and growth of nano-/micro-sized cavities, pores and pits for the various ion flux for varying numbers of laser pulses from 3000 to 12,000. By increasing ion flux by increasing the number of pulses up to 9000 shots, the dendritic structures initiate to grow along with cavities and pores. At the maximum ion flux for 12,000 shots, the unequiaxed dendritic structures become distinct and the distance between the dendrites is decreased, whereas cavities, pores and pits are completely finished. The XRD analysis reveals that a new phase of ZnC (0012) is formed in the brass substrate after ion implantation. Universal tensile testing machine and Vickers microhardness tester are used to explore the yield stress, ultimate tensile strength and microhardness of ion-implanted brass substrate. The mechanical properties monotonically increase by increasing the ion flux. Variations in mechanical properties are correlated with surface and structural modifications of brass.  相似文献   

18.
Abstract

The change in microstrains ε, block sizes L and in the temperature dependences of conductivity of polysilicon with the grain size 30-40nm at N+, Ne+, P+ ion irradiation has been studied. It is shown that ε increases while L practically is not changing up to amorphization. The change in conductivity is governed by an increase in the density of states near the Fermi level and depends both on the damage rate for the given ions and their chemical activity.  相似文献   

19.
The type, energy, ion dose, and heating temperature required to ensure a stable minimum work function of a surface in one experimental cycle (at least 2–3 min) are determined. Secondary ion mass spectrograms are recorded using Cs+, Ba+, and Ar+ ions. Cu, Al, and Mo samples are studied. The optimum ion implantation conditions and the activation temperature that provide a stable minimum work function of the sample surfaces are found. The samples implanted by Ba+ ions withstand higher temperature and current loads than the samples implanted by Cs+ ions. However, the work function in the case of Cs+ ions decreases stronger (to 1.9 eV). It is shown that neutral sputtered particles do not leave the surface at eφ ≤ 1.85–1.90 eV.  相似文献   

20.
室温下在单晶Si中注入(0.6—1.5)at%的C原子,部分样品在C离子注入之前在其中注入29Si+离子产生损伤,然后在相同条件下利用高温退火固相外延了Si1-xCx合金,研究了预注入对Si1-xCx合金形成的影响.如果注入C离子的剂量小于引起Si非晶化的剂量,在950℃退火过程中注入产生的损伤缺陷容易与C原子结合形成缺陷团簇,难于形成Si1-xC关键词: 离子注入 固相外延 1-xCx合金')" href="#">Si1-xCx合金  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号