首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLOWOFAVISCOPLASTICFLUIDONAROTATINGDISKFanChun(范椿)(InstiuieofMechanics,AcademiaSinica,Beijing)(ReceivedNov.20,1992;Communicat...  相似文献   

2.
The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity are taken constant. Appropriate transformations yield the nonlinear ordinary differential systems. Convergent series solutions are developed and analyzed. The numerical results for the local Nusselt and Sherwood numbers are demonstrated. It is found that an increase in the strength of the Brownian motion decays the temperature noticeably. However, the rate of heat transfer and the concentration of the nanoparticles at the surface increase for larger Brownian motion parameters.  相似文献   

3.
The effect of the Coriolis force on the evolution of a thin film of Newtonian fluid on a rotating disk is investigated. The thin-film approximation is made in which inertia terms in the Navier–Stokes equation are neglected. This requires that the thickness of the thin film be less than the thickness of the Ekman boundary layer in a rotating fluid of the same kinematic viscosity. A new first-order quasi-linear partial differential equation for the thickness of the thin film, which describes viscous, centrifugal and Coriolis-force effects, is derived. It extends an equation due to Emslie et al. [J. Appl. Phys. 29, 858 (1958)] which was obtained neglecting the Coriolis force. The problem is formulated as a Cauchy initial-value problem. As time increases the surface profile flattens and, if the initial profile is sufficiently negative, it develops a breaking wave. Numerical solutions of the new equation, obtained by integrating along its characteristic curves, are compared with analytical solutions of the equation of Emslie et al. to determine the effect of the Coriolis force on the surface flattening, the wave breaking and the streamlines when inertia terms are neglected.  相似文献   

4.
This paper examines the magnetohydrodynamic boundary layer flow of Jeffrey fluid due to a rotating disk. The governing partial differential equations are first transformed into the coupled system of ordinary differential equations and then solved by using the homotopy analysis method. The influence of various involved physical parameters on the dimensionless radial and azimuthal velocities is sketched and analyzed. The variation of skin friction coefficients in radial and azimuthal directions is studied for various values of pertinent parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
An exact solution for the three-dimensional flow due to non-coaxial rotation of a porous disk and a second grade fluid at infinity is obtained. It is shown that for uniform suction or uniform blowing at the disk, an asymptotic profile exists for the velocity distribution. The velocity depends on two parameters: one of them is the suction parameter or blowing parameter and the other is the visco-elastic parameter. Furthermore, it is found that when the value of the visco-elastic parameter is fixed, the velocity decreases with an increase in the value of the suction parameter and when the value of the suction parameter is fixed, the velocity increases with an increase in the value of the visco-elastic parameter.  相似文献   

6.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

7.
An unsteady flow and heat transfer to an infinite porous disk rotating in a Reiner—Rivlin non-Newtonian fluid are considered. The effect of the non-Newtonian fluid characteristics and injection (suction) through the disk surface on velocity and temperature distributions and heat transfer is considered. Numerical solutions are obtained over the entire range of the governing parameters.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 85–95, January–February, 2005.  相似文献   

8.
Rotating disk subjected to stationary slider loading system is a very common mechanical structure. This paper investigates the multibody dynamics of a rotating flexible annular thin disk subjected to double slider loading systems. Along the rotating disk radial and circumferential directions, two stationary slider loading systems are distributed. System dynamic model is solved by Galerkin's method, and then natural frequency, dynamic stability and mode shape are determined with a quadratic eigenvalue problem. Effects of the distributing positions and interaction mechanism of the double slider loading systems on natural frequency, dynamic stability and mode shape are discussed and investigated.  相似文献   

9.
The rotationally symmetric flow over a rotating disk in an incompressible viscous fluid is analyzed by a new method when the fluid at infinity is in a state of rigid rotation (in the same or in the opposite sense) about the same axis as that of the disk. Asymptotic expansions for the velocity field over the entire flow field are obtained for the general class of one-parameter rotationally symmetric flows. This method is further extended to the case when a uniform suction or injection is assumed at the rotating disk. Fluid motion induced by oscillatory suction of small amplitude at the rotating disk is also discussed.An initial-value analysis reveals that resonance is possible only when the angular velocity of the rotating fluid is greater than that of the rotating disk.  相似文献   

10.
This paper investigates the rotating flow and heat transfer of a viscous fluid induced by a stretching surface. The nonlinear problem subject to a given skin friction at the boundary is solved. Analytic solution is obtained using homotopy analysis method. The velocity, temperature, and stretching velocity is calculated for different values of the rotation parameter (λ). The obtained results are compared with the well known results of rotating flow induced by a stretching surface by using four sets of boundary conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Flow visualization has been conducted in a rotating cavity, comprising two steel discs and a peripheral polycarbonate shroud, for dimensionless flow rates of air up to |Cw|8000 and rotational Reynolds number up to Reφ106. For all the experiments, the ratio of the inner to outer radii of the discs was 0.1 and the ratio of the axial clearance between the discs to their outer radii was 0.133; five different shroud geometries were tested. The flow visualization has confirmed that the flow structure comprises a source region near the shroud, laminar or turbulent Ekman layers on the discs, a sink layer near the centre of the cavity, and an interior core of rotating fluid. Above a certain flow rate, this structure was found to be unstable; heating one disc tended to stabilize the flow. For isothermal flow, measurements of the size of the source region were in good agreement with values predicted from a simple theoretical model.  相似文献   

12.
The drift of spheres in a rotating fluid is investigated. The problem is studied experimentally and numerically using the Galerkin method. It is shown that for small angular velocities of the fluid Ω the drift velocity of the spheres is almost independent of Ω, but once a certain threshold value Ω* is attained the drift velocity rapidly decreases. The experimental dependence of the translational velocity of the sphere on the fluid angular velocity is explained on the basis of a theoretical analysis.  相似文献   

13.
A plane problem of fracture mechanics for a circular disk fitted onto a rotating shaft is considered. The disk is assumed to be fitted tightly onto the shaft, and there are N randomly located straight-line cracks of length 2lk (k = 1, 2, ..., N) near the inner surface of the disk. The interference between the disk and the rotating shaft, providing minimization of fracture parameters (stress intensity factor) of the disk, is theoretically studied on the basis of the minimax criterion. A closed system of algebraic equations is constructed, which allows the problem of optimal design to be solved. A simplified method of minimization of disk fracture parameters is considered. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 201–209, July–August, 2009.  相似文献   

14.
The calculations of quasi‐three‐dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k–ε model equations. The flow characteristics were studied by varying rotation speed ω for 0?ω?167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (α) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25 :759–766). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The stability of mechanical equilibrium of a horizontal layer of conducting fluid in the presence of a magnetic field rotating in a horizontal plane is considered. Both finite field rotation frequencies and the limiting case of high frequencies are investigated. It is shown that the magnetic field stabilizes the equilibrium. The dependence of the critical perturbation wavelength on the field strength is non-monotonic, and with increase in the magnetic field strength the mode of most dangerous perturbations changes from long-to short-wave type. Nonlinear three-dimensional convection regimes are calculated numerically. It is found that at finite supercriticalities and a sufficiently strong magnetic field the rolls and the hexagonal cells may be stable simultaneously.  相似文献   

16.
Jianjun  Feng  Benzhao  Zhang  Wangyi  Wu 《Acta Mechanica Sinica》1995,11(4):307-317
This paper presents an infinite series solution to the creeping flow equations for the axisymmetric motion of a sphere of arbitrary size rotating in a quiescent fluid around the axis of a circular orifice or a circular disk whose diameters are either larger or smaller than that of the sphere. Numerical tests of the convergence are passed and the comparison with the exact solution and other computational results shows an agreement to five significant figures for the torque coefficients in both cases. The torque coefficients are obtained for the sphere located up to a position tangent to the wall plane containing either the orifice or the disk. It is concluded that the torque coefficients of the sphere and the disk are monotonically increasing with the decrease of the distance from the disk or the orifice plane in both cases.  相似文献   

17.
This article studies the Soret and Dufour effects on the magnetohydrodynamic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.  相似文献   

18.
The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study.The disk impinges the oncoming flow with a time-dependent axial velocity.The three-dimensional axisymmetric boundary-layer flow is described by the Navier-Stokes equations.The governing equations are solved numerically,and two distinct similarity solution branches are obtained.Both solution branches exhibit different flow patterns.The upper branch solution exists for all values of the impinging parameter β and the rotating parameter.However,the lower branch solution breaks down at some moderate values of β.The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β.The results of the velocity profile,the skin friction,and the stream lines are demonstrated through graphs and tables for both solution branches.The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.  相似文献   

19.
Development of thin two-layer film over a uniformly rotating disk is studied numerically under the assumption of planar interface and free surface. Similarity transformation is applied to transform the Navier-Stokes equations into a set of coupled non-linear, unsteady partial differential equations. This set of equations are solved numerically by using the finite-difference technique. It is observed that the rate of film thickness varies at different time zone depending on the rate of rotational speed of the disk. A physical explanation is provided to justify this anomalous behaviour. It is observed that, smaller thickness on the top layer enhance the initial rate of film thinning. But the overall effect of density, viscosity and the initial film thickness ratio are found to be insensitive to the final film thickness at large time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号