首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exclusive decay of the Higgs boson to a vector meson(J/ψ or Υ(1 S)) and Z boson is studied in this work. The decay amplitudes are separated into two parts in a gauge invariant manner. The first part comes from the direct coupling of the Higgs boson to the charm(bottom) quark and the other from the HZZ*or the loop-induced HZγ*vertexes in the standard model. While the branching ratios from the direct channel are much smaller than those of the indirect channel, their interference terms give nontrivial contributions. We further calculate the QCD radiative corrections to both channels, which reduce the total branching ratios by around 20% for both J/ψ and Υ(1S) production. Our results provide a possible chance to check the SM predictions of the Hcc(Hbb)coupling and to seek for hints of new physics at the High Luminosity LHC or future hadron colliders.  相似文献   

2.
It is difficult to measure the WW-fusion Higgs production process(e~+e~-→νh)at a lepton collider with a center of mass energy of 240-250 Ge V due to its small rate and the large background from the Higgsstrahlung process with an invisible Z(e~+e~-→h Z,Z→ν).We construct a modified recoil mass variable,m~p_(recoil),defined using only the 3-momentum of the reconstructed Higgs particle,and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m_(recoil).Consequently,the m~p_(recoil)variable can be used to improve the overall precisions of the extracted Higgs couplings,in both the conventional framework and the effective-field-theory framework.We also explore the application of the m~p_(recoil)variable in the inclusive cross section measurements of the Higgsstrahlung process,while a quantitive analysis is left for future studies.  相似文献   

3.
null 《中国物理C(英文版)》2016,40(11):113104-113104
Considering the constraints from collider experiments and dark matter detection, we investigate the SUSY effects in the Higgs production channels e+e-→Zh at an e+e- collider with a center-of-mass energy above 240 GeV and γγ→h→bb at a photon collider with a center-of-mass energy above 125 GeV. In the parameter space allowed by current experiments, we find that the SUSY corrections to e+e-→Zh can reach a few percent and the production rate of γγ→h→bb can be enhanced by a factor of 1.2 over the SM prediction. We also calculate the exotic Higgs production e+e-→Zh1 in the next-to-minimal supersymmetric model (NMSSM) (h is the SM-like Higgs, h1 is the CP-even Higgs bosons which can be much lighter than h). We find that at a 250 GeV e+e- collider the production rates of e+e-→Zh1 can reach 60 fb.  相似文献   

4.
In the littlest Higgs model with T-parity, we discuss the pair production of the T-odd top partner(T_) that decays almost 100% into the top quark and the lightest T-odd particle(A_H). Considering the current constraints,we investigate the observability of the T-odd top partner pair production through the process pp→T_T_→tt A_HA_H in the final states with two leptons at 14 TeV LHC. We analyze the signal significance and found that the lower limits on the T-odd top partner mass are approximately 1.2 TeV, 1.3 TeV, and 1.4 TeV at the 2σ confidence level at 14 TeV LHC with an integrated luminosities of 30 fb~(-1), 100 fb~(-1), and 300 fb~(-1), respectively. This lower limit can be increased to approximately 1.5(1.6) TeV if we used 1000(3000) fb~(-1) of the integrated luminosity.  相似文献   

5.
The most general form of an effective two-doublet Higgs potential whose parameters are complex-valued and whose CP invariance is violated explicitly in the minimal supersymmetric model caused by Higgs boson interaction with third-generation squarks is considered. Higgs boson states are obtained and their masses are calculated, along with the decay widths of the lightest Higgs boson and the cross section for its production, in the case of substantial mixing between the CP-even states h and H and the CP-odd state A.  相似文献   

6.
We perform a global effective-field-theory analysis to assess the combined precision of Higgs couplings,triple gauge-boson couplings, and top-quark couplings, at future circular e~+e~- colliders, with a focus on runs below the tt production threshold. Deviations in the top-quark sector entering as one-loop corrections are consistently taken into account in the Higgs and diboson processes. We find that future lepton colliders running at center-of-mass energies below the tt production threshold can still provide useful information on top-quark couplings, by measuring virtual top-quark effects. With rate and differential measurements, the indirect individual sensitivity achievable is better than at the high-luminosity LHC. However, strong correlations between the extracted top-quark and Higgs couplings are also present and lead to much weaker global constraints on top-quark couplings. This implies that a direct probe of top-quark couplings above the tt production threshold is also helpful for the determination of Higgs and triple-gauge-boson couplings. In addition, we find that below the e~+e~-→tth production threshold, the top-quark Yukawa coupling can be determined by its loop corrections to all Higgs production and decay channels. Degeneracy with the ggh coupling can be resolved, and even a global limit is competitive with the prospects of a linear collider above the threshold. This provides an additional means of determining the top-quark Yukawa coupling indirectly at lepton colliders.  相似文献   

7.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

8.
We discuss Higgs boson decays in the CP-violating MSSM, and examine their phenomenological impact using cross section limits from the LEP Higgs searches. This includes a discussion of the full 1-loop results for the partial decay widths of neutral Higgs bosons into lighter neutral Higgs bosons (h a h b h c ) and of neutral Higgs bosons into fermions (\(h_{a} \to f \bar{f}\)). In calculating the genuine vertex corrections, we take into account the full spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. These genuine vertex corrections are supplemented with Higgs propagator corrections incorporating the full 1-loop and the dominant 2-loop contributions, and we illustrate a method of consistently treating diagrams involving mixing with Goldstone and Z bosons. In particular, the genuine vertex corrections to the process h a h b h c are found to be very large and, where this process is kinematically allowed, can have a significant effect on the regions of the CPX benchmark scenario which can be excluded by the results of the Higgs searches at LEP. However, there remains an unexcluded region of CPX parameter space at a lightest neutral Higgs boson mass of ~45 GeV. In the analysis, we pay particular attention to the conversion between parameters defined in different renormalisation schemes and are therefore able to make a comparison to the results found using renormalisation group improved/effective potential calculations.  相似文献   

9.
We calculate the dominant one-loop radiative corrections arising from quark-squark loops to the mass squared matrix of theCP-even Higgs bosons in a non-minimal supersymmetric Standard Model containing two Higgs doublets and a Higgs singlet chiral superfield using one-loop effective potential approximation. We use this result to evaluate upper and lower bounds on the radiatively corrected masses of all the scalar Higgs bosons as a function of the parameters of the model. We find that the one-loop radiative corrections are substantial only for the lightest Higgs boson of the model and can push its mass beyond the reach of LEP. We also calculate an absolute upper bound on the mass of the radiatively corrected lightest Higgs boson and compare it with the corresponding bound in the minimal supersymmetric Standard Model.  相似文献   

10.
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan β and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.   相似文献   

11.
《Physics letters. [Part B]》1988,208(2):315-318
It is shown that LEP can set a lower bound on the mass of the lightest supersymmetric Higgs boson (H20) only if both processes Z0→H20μ+μ and Z0→H20H30 (where H30 is an extra supersymmetric Higgs) are simultaneously considered.  相似文献   

12.
Rui Chen  Jun He  Xiang Liu 《中国物理C(英文版)》2017,41(10):103105-103105
Using the one-boson-exchange model, we investigate the ΛcDs*, ∑cDs*, ∑c*Ds*, ΞcD*, Ξ'cD*, and Ξc*D* interactions by considering the one-eta-exchange and/or one-pion-exchange contributions. We further predict the existence of hidden-charm molecular pentaquarks. Promising candidates for hidden-charm molecular pentaquarks include a Ξ'cD* state with 0((1/2)-) and the Ξc*D* states with 0((1/2)-) and 0((3/2)-). Experimental searches for these predicted hidden-charm molecular pentaquarks are an interesting future research topic for experiments like LHCb.  相似文献   

13.
ROBERTA VOLPE 《Pramana》2012,79(5):1341-1344
A search for a Higgs boson decaying into two photons in pp collisions at the LHC at a centre-of-mass energy of 7 TeV is presented. The analysis is performed on a dataset corresponding to 1.66 fb?1 of data recorded in 2011 by the CMS experiment. Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section of a fermiophobic Higgs boson decaying into two photons.  相似文献   

14.
A detailed analysis of the top-quark/squark quantum corrections to the lightest CP-even Higgs boson self-couplings is presented in the MSSM. By considering the leading one-loop Yukawa-coupling contributions of , we discuss the decoupling behavior of these corrections when the top squarks are heavy compared to the electroweak scale. As shown analytically and numerically, the large corrections can almost completely be absorbed into the -boson mass. Our conclusion is that the self-couplings remain similar to the coupling of the SM Higgs boson for the heavy top-squark sector. Received: 15 November 2001 / Published online: 25 January 2002  相似文献   

15.
Mixing in the systems of neutral K 0 and B 0 mesons is considered within the minimal supersymmetric standard model (MSSM) containing a type-II Yukawa sector and featuring an explicitCP violation in the Higgs potential. In the case of a strong mixing of CP-even and CP-odd states, the model admits the presence of a light charged Higgs boson. Basic mixing parameters are calculated. These include the mass difference Δm LS between neutral kaons and the parameter ε, which characterizes the amount of an indirect CP violation (that is, that which arises owing to an ultraweak mixing of CP-invariant and CP-noninvariant components). In the limit of the low-energy one-loop approximation, it is shown that, for the K 0 mesons, the contribution of nonstandard-physics effects to the mass splitting of the neutral kaons and an indirect CP violation are very small and are weakly dependent on the mass of the charged Higgs boson. Under certain conditions, the nonstandard contributions for the B 0- $ \bar B_d^0 $ and B 0- $ \bar B_s^0 $ systems may become somewhat more substantial, which constrains the MSSM parameter space.  相似文献   

16.
We present the effects of heavy CP-even (H) and CP-odd (A) Higgs bosons on the production cross section of the process at the energy around the mass poles of the Higgs bosons. It is found that interference between H and A with small mass gap, as well as the ones between Higgs bosons and continuum, contributes to the cross section, if the photon beams are polarized and if we observe the helicity of the top quarks. It is demonstrated in the framework of the minimal supersymmetric extension of the standard model that the H and A contributions can be sizable at future colliders for small values of . The methods to measure the CP-parity of the Higgs boson are also presented. The statistical significance of detecting the Higgs signals and measuring the Higgs CP-parity is evaluated. Received: 16 December 1999 / Revised version: 30 January 2000 / Published online: 6 April 2000  相似文献   

17.
We consider the production and two-photon decay of theCP-even Higgs bosons (h 0 andH 0) of the Minimal Supersymmetric Standard Model (MSSM) at the Large Hadron Collider. We study in detail the dependence of the cross section on various parameters of the MSSM, especially the dependence on the mixing effects in the squark sector due to the Higgs bilinear parameterμ and the soft supersymmetry breaking parameterA. We find that the cross section for the production of these Higgs bosons has a significant dependence on the parameters which determine the chiral mixing in the squark sector. The cross section times the two-photon branching ratio ofh 0 is of the order of 15–25 fb in much of the parameter space that remains after imposing the present experimental constraints. For theH 0 the two-photon branching ratio is only significant if theH 0 is light, but then the cross section times the branching ratio may exceed 200 fb. The QCD corrections due to quark loop contributions are known to increase the cross section by 50%. We find the dependence of the cross section on the gluon distribution function used to be rather insignificant.  相似文献   

18.
A general framework is given for evaluating the contributions of as yet undiscovered heavy quarks to the gluonic decay rate of the Weinberg-Salam type Higgs boson. Since the Yukawa coupling of the Higgs boson to a quark pair is proportional to the quark mass, loop graphs involving heavy quarks have a non-vanishing effect on the gluonic decay width of the Higgs boson. This effect of heavy quarks with massesM j(j=t,...) much greater than the Higgs boson massm H is calculated in an effective gauge theory. The effects of two different kinds of large logarithms, lnM j 2 /μ m h 2 /μ 2 are separated and summed up by the renormalization group method. It is found that the higher order QCD corrections are large and that the gluonic contribution to the hadronic decay width is significant if there are more than three generations. The Higgs decay width can therefore be used to probe the number of generations of heavy quarks.  相似文献   

19.
We propose to measure the HZγ and Hγγ anomalous couplings in the process e+e-→Hγ with the sequential decay of H→bˉb. The discovery potential of observing the anomalous couplings are explored in detail.Our study shows that future electron–positron colliders have great potential to test the HZγ and Hγγ couplings.Conservative bounds on the two anomalous couplings are also derived when no new physics signal is detected on top of the SM backgrounds.  相似文献   

20.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号