首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincaré gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes ‘living’ on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new ‘exotic’ torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.  相似文献   

2.
A special class of higher curvature theories of gravity, Ricci cubic gravity (RCG), in general d dimensional space-time has been investigated in this paper. We have used two different approaches, the linearized equations of motion and the auxiliary field formalism to study the massive and massless graviton propagating modes of the AdS background. Using the auxiliary field formalism, we have found the renormalized boundary stress tensor to compute the mass of the Schwarzschild–AdS and Lifshitz black holes in RCG theory.  相似文献   

3.
We propose an alternative understanding of gravity, resulting from the extension of N. Wu’s gauge theory of gravity with massive gravitons, which are minimally coupled to massless gravitons. Based on this, we derive the equations of state for massive gravitons. We study the dynamics of these massive gravitons in a flat, homogeneous and isotropic Friedmann-Robertson-Walker (FRW) universe. We calculate the critical points of the massive graviton dark energy interacting with background perfect fluid. These calculations may have crucial implications for the massive gravitons and dark energy theories. They could, therefore, have important repercussions for current cosmological problems.  相似文献   

4.
In the Einstein–Cartan theory of torsion-free gravity coupling to massless fermions, the four-fermion interaction is induced and its strength is a function of the gravitational and gauge couplings, as well as the Immirzi parameter. We study the dynamics of the four-fermion interaction to determine whether effective bilinear terms of massive fermion fields are generated. Calculating one-particle-irreducible two-point functions of fermion fields, we identify three different phases and two critical points for phase transitions characterized by the strength of four-fermion interaction: (1) chiral symmetric phase for massive fermions in strong coupling regime; (2) chiral symmetric broken phase for massive fermions in intermediate coupling regime; (3) chiral symmetric phase for massless fermions in weak coupling regime. We discuss the scaling-invariant region for an effective theory of massive fermions coupled to torsion-free gravity in the low-energy limit.  相似文献   

5.
We continue our investigation of massive gravity in the massless limit of vanishing graviton mass. From gauge invariance we derive the most general coupling between scalar matter and gravity. We get further couplings beside the standard coupling to the energy–momentum tensor. On the classical level this leads to a further modification of general relativity.  相似文献   

6.
In this paper, we generalize the study of the model of holographic superconductors in excited states to the framework of massive gravity at the probe limit. By taking into account the effect of a massive graviton, we numerically present a family of solutions for holographic superconductors in excited states and find that the critical temperatures can be higher due to the effect of the massive graviton, in comparison with the superconductor in Einstein gravity. We also investigate the condensates and conductivities in the ground state and the excited states by studying various parameters that determine the framework of gravity background.  相似文献   

7.
We develop a theory in which there are couplings amongst Dirac spinor, dilaton and non-Riemannian gravity and explore the nature of connection-induced dilaton couplings to gravity and Dirac spinor when the theory is reformulated in terms of the Levi-Civita connection. After presenting some exact solutions without spinors, we investigate the minimal spinor couplings to the model and in conclusion we cannot find any nontrivial dilaton couplings to spinor.  相似文献   

8.
《Comptes Rendus Physique》2015,16(10):986-993
Deciphering the mechanisms at play in the formation and evolution of the large-scale structure of the universe is part of the scientific goals of many projects of observational cosmology. In particular, large-scale structure observations can be used to infer mode-coupling effects, whether they come from the physics of the early universe or from its late time evolution. Specificities of such couplings are presented, noting that in principle they can be directly detected through bispectra of the cosmic microwave background temperature anisotropies or density in the local universe. The existence of such couplings have however more far-reaching consequences for the growth of the structure. Those are sketched as well as their possible observational impacts.  相似文献   

9.
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.  相似文献   

10.
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.  相似文献   

11.
Using squeezed vacuum states formalism of quantum optics, a homogeneous and massive scalar field minimally coupled to gravity in Bianchi type-I model of the universe is examined in the frame work of semiclassical theory of gravity. Hence an approximate leading solution to the semiclassical Einstein equation is found. The next order solution for each scale factor in their respective direction show power law of expansion. It is further noted that evolution of scale factors are mutually correlated. The phenomena of nonclassical particle creation is also examined in the anisotropic background cosmology.  相似文献   

12.
A gauge-invariant Rarita-Schwinger theory of a massive spin-3/2 particle interacting with external electromagnetic, gravitational and dilaton fields is obtained by Kaluza-Klein reduction of a massless Rarita-Schwinger theory with graviational interaction. Fermionic gauge invariance serves to determine the background equations of motion. The couplings with external fields obtained by the Kaluza-Klein reduction are shown to lead to the absence of the classical Velo-Zwanziger problem and on quantizing using Dirac's procedure, the field anticommutators are found to be positive definite.  相似文献   

13.
Generic relevant deformations of Einstein's gravity theory contain additional degrees of freedom that have a multifaceted stabilization dynamics on curved spacetimes. We show that these relevant degrees of freedom are self-protected against unitarity violations by the formation of classical field lumps that eventually merge to a new background geometry. The transition is heralded by the massive decay of the original vacuum and evolves through a strong coupling regime. This process fits in the recently proposed classicalization mechanism and extends it further to free field dynamics on curved backgrounds.  相似文献   

14.
We show that for four-dimensional spacetimes with a non-null hypersurface orthogonal Killing vector and for a Chern–Simons (CS) background (non-dynamical) scalar field, which is constant along the Killing vector, the source-free equations of CS modified gravity decouple into their Einstein and Cotton constituents. Thus, the model supports only general relativity solutions. We also show that, when the cosmological constant vanishes and the gradient of the CS scalar field is parallel to the non-null hypersurface orthogonal Killing vector of constant length, CS modified gravity reduces to topologically massive gravity in three dimensions. Meanwhile, with the cosmological constant such a reduction requires an appropriate source term for CS modified gravity.  相似文献   

15.
Taking a quantum corrected form of Raychaudhuri equation in a geometric background described by a Lorentz-violating massive theory of gravity, we go through investigating a time-like congruence of massive gravitons affected by a Bohmian quantum potential. We find some definite conditions upon which these gravitons are confined to diverging Bohmian trajectories. The respective behaviour of those quantum potentials are also derived and discussed. Additionally, and through a relativistic quantum treatment of a typical wave function, we demonstrate schematic conditions on the associated frequency to the gravitons, in order to satisfy the necessity of divergence.  相似文献   

16.
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.  相似文献   

17.
We present new, massive, non-ghost solutions for the Dirac field coupled self-consistently to gravity. We employ a gauge-theoretic formulation of gravity which automatically identifies the spin of the Dirac field with the torsion of the gauge fields. Homogeneity of the field observables requires that the spatial sections be flat. Expanding and collapsing singular solutions are given, as well as a solution which expands from a singularity before recollapsing. Torsion effects are only important while the Compton wavelength of the Dirac field is larger than the Hubble radius. We study the motion of spinning point-particles in the background of the expanding solution. The anisotropy due to the torsion is manifest in the particle trajectories.  相似文献   

18.
Static spherically symmetric solutions of 4d Brans–Dicke theory include a set of naked singularity solutions. Dilatonic effects near the naked singularities result in either a shielding or an antishielding effect from intruding massive test particles. One result is that for a portion of the solution parameter space, no communication between the singularity and a distant observer is possible via massive particle exchanges. Kaluza–Klein gravity is considered as a special case.  相似文献   

19.
In this letter we study fermionic zero modes in gauge and gravity backgrounds taking a two-dimensional compact manifold S2 as extra dimensions. The result is that there exist massless Dirac fermions which have normalizable zero modes under quite general assumptions about these backgrounds on the bulk. Several special cases of gauge background on the sphere axe discussed and some simple fermionic zero modes are obtained.  相似文献   

20.
We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号