首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate four-dimensional spherically symmetric black hole solutions in gravity theories with massless, neutral scalars non-minimally coupled to gauge fields. In the non-extremal case, we explicitly show that, under the variation of the moduli, the scalar charges appear in the first law of black hole thermodynamics. In the extremal limit, the near horizon geometry is AdS 2 × S 2 and the entropy does not depend on the values of moduli at infinity. We discuss the attractor behaviour by using Sen’s entropy function formalism as well as the effective potential approach and their relation with the results previously obtained through special geometry method. We also argue that the attractor mechanism is at the basis of the matching between the microscopic and macroscopic entropies for the extremal non-BPS Kaluza–Klein black hole.  相似文献   

2.
3.
4.
Supermassive Black Holes are the most entropic objects found in the universe. The Holographic Bound (HB) to the entropy is used to constrain their formation time with initial masses 106–8 M , as inferred from observations. We find that the entropy considerations are more limiting than causality for this direct formation. Later we analyze the possibility of SMBHs growing from seed black holes. The growth of the initial mass is studied in the case of accretion of pure radiation and quintessence fields, and we find that there is a class of models that may allow this metamorphosis. Our analysis generalizes recent work for some models of quintessence capable of producing a substantial growth in a short time, while simultaneously obeying the causal and Holographic Bound limits.  相似文献   

5.
We take up the question why the initial entropy in the universe was small, in the context of evolution of the entropy of a classical system. We note that coarse-graining is an important aspect of entropy evaluation which can reverse the direction of the increase in entropy, i.e., the direction of thermodynamic arrow of time. Then we investigate the role of decoherence in the selection of coarse-graining and explain how to compute entropy for a decohered classical system. Finally, we argue that the requirement of low initial entropy imposes constraints on the decoherence process.  相似文献   

6.
7.
The holographic principle has revealed that phyical systems in 3-D space, black holes included, are basically two-dimensional as far as their information content is concerned. This conclusion is complemented by one sketched here: as far as entropy or information flow is concerned, a black hole behaves as a one-dimensional channel. We define a channel in flat spacetime in thermodynamic terms, and contrast it with common entropy emitting systems. A black hole is more like the former: its entropy output is related to the emitted power as it would be for a one-dimensional channel, and disposal of an information stream down a black hole is limited by the power invested in the same way as for a one-dimensional channel.  相似文献   

8.
A memory is a physical system for transferring information from one moment in time to another, where that information concerns something external to the system itself. This paper argues on information-theoretic and statistical mechanical grounds that useful memories must be of one of two types, exemplified by memory in abstract computer programs and by memory in photographs. Photograph-type memories work by exploiting a collapse of state space flow to an attractor state. (This attractor state is the initialized state of the memory.) The central assumption of the theory of reversible computation tells us that inany such collapsing, regardless of whether the collapsing proceeds from the past to the future or vice versa, the collapsing must increase the entropy of the system. In concert with the second law, this establishes the logical necessity of the empirical observation that photograph-type memories are temporally asymmetric (they can tell us about the past but not about the future). Under the assumption that human memory is a photograph-type memory, this result also explains why we humans can remember only our past and not our future. In contrast to photograph-type memories, computer-type memories do not require any initialization, and therefore are not directly affected by the second law. As a result, computer memories can be of the future as easily as of the past, even if the program running on the computer is logically irreversible. This is entirely in accord with the well-known temporal reversibility of the process of computation. This paper ends by arguing that the asymmetry of the psychological arrow of time is a direct consequence of the asymmetry of human memory. With the rest of this paper, this explains, explicitly and rigorously, why the psychological and thermodynamic arrows of time are correlated with one another.  相似文献   

9.
The second law of thermodynamics has two distinct aspects to its foundations. The first concerns the question of why entropy goes up in the future, and the second, of why it goes down in the past. Statistical physicists tend to be more concerned with the first question and with careful considerations of definition and mathematical detail. The second question is of quite a different nature; it leads into areas of cosmology and quantum gravity, where the mathematical and physical issues are ill understood.  相似文献   

10.
We investigate whether black holes can be defined without using event horizons. In particular we focus on the thermodynamic properties of event horizons and the alternative, locally defined horizons. We discuss the assumptions and limitations of the proofs of the zeroth, first and second laws of black hole mechanics for both event horizons and trapping horizons. This leads to the possibility that black holes may be more usefully defined in terms of trapping horizons. We also review how Hawking radiation may be seen to arise from trapping horizons and discuss which horizon area should be associated with the gravitational entropy.  相似文献   

11.
The Generalized Uncertainty Principle and Black Hole Remnants   总被引:1,自引:0,他引:1  
In the current standard viewpoint small black holes are believed to emit black body radiation at the Hawking temperature, at least until they approach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.  相似文献   

12.
Tensor and scalar unparticle couplings to matter have been shown to enhance gravitational interactions and provide corrections to the Schwarzschild metric and associated black hole structure. We derive an exact solution to the Einstein equations for vector unparticles, and conclusively demonstrate that these induce Riessner–Nordström (RN)-like solutions where the role of the “charge” is defined by a composite of unparticle phase space parameters. These black holes admit double-horizon structure, although unlike the RN metric these solutions have a minimum inner horizon value. In the extremal limit, the Hawking temperature is shown to vanish. As with the scalar/tensor case, the (outer) horizon is shown via entropy considerations to behave like a fractal surface of spectral dimension dH=2dUdH=2dU.  相似文献   

13.
In recent years an idea has emerged that a system in a 3-dimensional space can be described from an information point of view by a system on its 2-dimensional boundary. This mysterious correspondence is called the Holographic Principle and has had profound effects in string theory and our perception of space-time. In this note we describe a purely mathematical model of the Holographic Principle using ideas from nonlinear dynamical systems theory. We show that a random map on the surface S2 of a 3-dimensional open ball B has a natural counterpart in B, and the two maps acting in different dimensional spaces have the same entropy. We can reverse this construction if we start with a special 3-dimensional map in B called a skew product. The key idea is to use the randomness, as imbedded in the parameter of the 2-dimensional random map, to define a third dimension. The main result shows that if we start with an arbitrary dynamical system in B with entropy E we can construct a random map on S2 whose entropy is arbitrarily close to E.  相似文献   

14.
The present work deals with a detailed study of universal thermodynamics in different modified gravity theories. The validity of the generalized second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) of the Universe bounded by a horizon (apparent/event) in f(R)f(R)-gravity, Einstein–Gauss–Bonnet gravity, RS-II brane scenario and DGP brane model has been investigated. In the perspective of recent observational evidences, the matter in the Universe is chosen as interacting holographic dark energy model. The entropy on the horizons is evaluated from the validity of the unified first law and as a result there is a correction (in integral form) to the usual Bekenstein entropy. The other thermodynamical parameter namely temperature on the horizon is chosen as the recently introduced corrected Hawking temperature. The above thermodynamical analysis is done for homogeneous and isotropic flat FLRW model of the Universe. The restrictions for the validity of GSLT and the TE are presented in tabular form for each gravity theory. Finally, due to complicated expressions, the validity of GSLT and TE are also examined from graphical representation, using three Planck data sets.  相似文献   

15.
We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known, the oscillator then has a higher average energy than that given by its ground state. Here we show analytically that for a damping model with arbitrarily discrete distribution of bath modes and damping models with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however, physically unrealistic models. An erratum to this article is available at .  相似文献   

16.
热力学第二定律的非对称性   总被引:3,自引:0,他引:3  
张兰知 《大学物理》2001,20(3):24-25,46
热力学第二定律揭示了自然界中存在着的非对称性。  相似文献   

17.
We show that the existence of a temperature scale implies the existence of the absolute temperature and the entropy. The consequences for the structure of thermodynamics are discussed.  相似文献   

18.
We review the cosmic evolution of entropy and the gravitational origin of the free energy required by life. All dissipative structures in the universe including all forms of life, owe their existence to the fact that the universe started in a low entropy state and has not yet reached equilibrium. The low initial entropy was due to the low gravitational entropy of the nearly homogeneously distributed matter and has, through gravitational collapse, evolved gradients in density, temperature, pressure and chemistry. These gradients, when steep enough, give rise to far from equilibrium dissipative structures (e.g., galaxies, stars, black holes, hurricanes and life) which emerge spontaneously to hasten the destruction of the gradients which spawned them. This represents a paradigm shift from “we eat food” to “food has produced us to eat it”.  相似文献   

19.
20.
《Physics letters. A》2020,384(25):126460
Jensen's Inequality (JIEQ) has proved to be a major tool to prove the consistency of various fluctuation theorems with the second law in microscopic nonequilibrium thermodynamics. We show that the situation is far from clear and the reliance on the JIEQ may be quite misleading in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号