首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate a dynamical origin for the dimension-five seesaw operator in dimensional deconstruction models. Light neutrino masses arise from the seesaw scale which corresponds to the inverse lattice spacing. It is shown that the deconstructing limit naturally prefers maximal leptonic mixing. Higher-order corrections which are allowed by gauge invariance can transform the bimaximal into a bilarge mixing. These terms may appear to be nonrenormalizable at scales smaller than the deconstruction scale.  相似文献   

2.
We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S 4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ 12 depends on tanb\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ 12 in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tanb\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.  相似文献   

3.
We propose the inverse seesaw mechanism as a way to understand small Majorana masses for neutrinos in warped extra dimension models with seesaw scale in the TeV range. The ultra-small lepton number violation needed in implementing inverse seesaw mechanism in 4D models is explained in this model as a consequence of lepton number breaking occurring on the Planck brane. We construct realistic models based on this idea that fit observed neutrino oscillation data for both normal and inverted mass patterns. We compute the corrections to light neutrino masses from the Kaluza-Klein modes and show that they are small in the parameter range of interest. Another feature of the model is that the absence of global parity anomaly implies the existence of at least one light sterile neutrino with sterile and active neutrino mixing in the range suggested by the LSND and MiniBooNE observations.  相似文献   

4.
We compute the low energy threshold corrections to neutrino masses and mixing in the standard model (SM) and its minimal supersymmetric version, using the effective theory technique. We demonstrate that they stabilize the results for neutrino masses and mixing with respect to the choice of the scale to which the renormalization group (RG) equation is integrated. (This confirms the correctness of the recent re-derivation of the RGE for the SM in hep-ph/0108005.) Since, as is known, those corrections are potentially very important for phenomenology we derive for them the explicit formulae that can be applied to specific models of neutrino masses and mixing. Received: 24 October 2001 / Revised version: 19 November 2001 / Published online: 25 January 2002  相似文献   

5.
We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a discrepancy factor of 4.2% with running vacuum expectation value (VEV) (13% for scale-independent VEV) in mass eigenvalues at low-energy scale but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in the MSSM, viz., radiative magnification of solar and atmospheric mixings in the case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero Ue3 (JM conjecture). We observe certain exceptions to these conjectures. We find a new result that both solar mass scale and Ue3 can be generated through radiative corrections at low energy scale. Finally the effect of scaledependent vacuum expectation value in neutrino mass renormalisation is discussed  相似文献   

6.
We discuss the leptonic flavor structure generated by a brane shifted extra dimensional seesaw model with a single right handed neutrino in the bulk. In contrast to previous works, no unitarity approximation for the \(3 \times 3\) submatrix has been employed. This allows to study phenomenological signatures such as lepton flavor violating decays. A strong prediction of the model, assuming CP conservation, are the ratios of flavor violating charged lepton decay and Z decay branching ratios which are correlated with the neutrino mixing angles and the neutrino mass hierarchy. Furthermore, it is possible to obtain branching ratios for \(\mu \rightarrow e \gamma \) close to the experimental bounds even with Yukawa couplings of order one.  相似文献   

7.
Neutrino factories allow precise measurements of neutrino masses, leptonic mixing angles, leptonic CP-violation and matter effects. Some aspects of matter effects and their role in the disentanglement of parameters in very long baseline neutrino oscillation experiments are discussed.  相似文献   

8.
We investigate a six-dimensional universal extra-dimensional model in the extension of an effective neutrino mass operator. We derive the β  -functions and renormalization group equations for the Yukawa couplings, the Higgs self-coupling, and the effective neutrino mass operator in this model. Especially, we focus on the renormalization group running of physical parameters such as the Higgs self-coupling and the leptonic mixing angles. The recent measurements of the Higgs boson mass by the ATLAS and CMS Collaborations at the LHC as well as the current three-flavor global fits of neutrino oscillation data have been taken into account. We set a bound on the six-dimensional model, using the vacuum stability criterion, that allows five Kaluza–Klein modes only, which leads to a strong limit on the cutoff scale. Furthermore, we find that the leptonic mixing angle θ12θ12 shows the most sizeable running, and that the running of the angles θ13θ13 and θ23θ23 are negligible. Finally, it turns out that the findings in this six-dimensional model are comparable with what is achieved in the corresponding five-dimensional model, but the cutoff scale is significantly smaller, which means that it could be detectable in a closer future.  相似文献   

9.
In the supersymmetric left-right model,the light neutrino masses are given by the Type-II seesaw mechanism.A duality property of this mechanism indicates that there exist eight possible Higgs triplet Yukawa couplings which result in the same neutrino ma6s matrix.In this paper,we work out the one-loop renormalization group equations for the effective neutrino mass matrix in the supersymmetric left-right model.The stability of the Type-II seesaw scenario is briefly discussed.We also study the lepton-flavor-violating processes (τ→μγ and τ→eγ)by using the reconstructed Higgs triplet Yukawa couplings.  相似文献   

10.
A systematic study of neutrino masses in models with local B-L symmetry is presented. The observed SU(4)c violation in fermion masses, which is necessary to explain why me is not equal md, is related to the scale of B-L violation. An alternative approach uses renormalization group methods to determine this scale. The heaviest neutrino mass is predicted to be 0.1–50 eV in the case of four fermion generations. Two different generation patterns for neutrino masses are found, one predicting large mixing between νe and νμ (and eventually ντ) and the other predicting leptonic mixing angles of the same order as quark mixing angles.  相似文献   

11.
We consider the simplest extension of the standard electroweak model by one sterile neutrino that allows for neutrino masses and mixing. We find that its leptonic sector contains much less free physical parameters than previously realized. In addition to the two neutrino masses, the lepton mixing matrix in charged current interactions involves (n-1) free physical mixing angles for n generations. The mixing matrix in neutral current interactions of neutrinos is completely fixed by the two masses. Both interactions conserve CP. We illustrate the phenomenological implications of the model by vacuum neutrino oscillations, tritium β decay and neutrinoless double β decay. It turns out that, due to the revealed specific structure in its mixing matrix, the model with any n generations cannot accommodate simultaneously the data by KamLAND, K2K and CHOOZ. PACS 14.60.Pq; 14.60.St; 23.40.-s  相似文献   

12.
We derive the renormalization group equations (RGE) for the flavor coupling matrices of the effective dimension-five operators which yield Majorana neutrino masses in the multi-Higgs-doublet standard model; in particular, we consider the case where two different scalar doublets occur in those operators. We also write down the RGE for the scalar-potential quartic couplings and for the Yukawa couplings of that model, in the absence of quarks. As an application of the RGE, we consider two models which, based on a - interchange symmetry, predict maximal atmospheric neutrino mixing, together with U e3 = 0, at the seesaw scale. We estimate the change of those predictions due to the evolution of the coupling matrices of the effective mass operators from the seesaw scale down to the electroweak scale. We derive an upper bound on that change, thereby finding that the radiative corrections to those predictions are in general negligible.Received: 30 September 2004, Published online: 11 January 2005PACS: 11.10.Hi, 14.60.Pq, 12.60.Fr, 11.30.Hv  相似文献   

13.
In type I seesaw models with flavor symmetries accounting for the lepton mixing angles the CP asymmetry in right-handed neutrino decays vanishes in the limit in which the mixing pattern is exact. We study the implications that additional degrees of freedom from type II seesaw may have for leptogenesis in such a limit. We classify in a model independent way the possible realizations of type I and II seesaw schemes, differentiating between classes in which leptogenesis is viable or not. We point out that even with the interplay of type I and II seesaws there are generic classes of minimal models in which the CP asymmetry vanishes. Finally we analyze the generation of the lepton asymmetry by solving the corresponding kinetic equations in the general case of a mild hierarchy between the light right-handed neutrino and the scalar triplet masses. We identify the possible scenarios in which leptogenesis can take place.  相似文献   

14.
We list operators of the superpotential of the effective MSSM that emerge from the NMSGUT up to sextic degree. We give illustrative expressions for the coefficients in terms of NMSGUT parameters. We also estimate the impact of GUT scale threshold corrections on these effective operators in view of the demonstration that B violation via quartic superpotential terms can be suppressed to acceptable levels after including such corrections in the NMSGUT. We find a novel \(B, B-L\) violating quintic operator that leads to the decay mode \(n\rightarrow e^- K^+\). We also remark that the threshold corrections to the Type-I seesaw mechanism make the deviation of right-handed neutrino masses from the GUT scale more natural while Type-II seesaw neutrino masses, which earlier tended to utterly negligible receive threshold enhancement. Our results are of relevance for analysing \(B-L\) violating operator-based, sphaleron-safe, baryogenesis.  相似文献   

15.
16.
In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tan β, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.  相似文献   

17.
We address the question of deviations from \(3\times 3\) unitarity of the leptonic mixing matrix showing that, in the framework of type I seesaw mechanism, one may have significant deviations from unitarity that can be detected at the next round of experiments while some of the heavy neutrino masses are sufficiently low to become within experimental reach. For that purpose we introduce a specially useful parametrisation that enables to control all deviations of unitarity through a single \(3 \times 3\) matrix, which we denote by X and which connects the mixing of the light and heavy neutrinos in the context of type I seesaw. We show that there is no need for the Yukawa couplings to be extremely suppressed. We present specific examples where deviations from \(3\times 3\) unitarity are sufficiently small to conform to all the present stringent experimental bounds.  相似文献   

18.
We investigate the sensitivities of future neutrino oscillation experiments for measuring the neutrino mass squared differences and leptonic mixing angles independently with neutrinos and anti-neutrinos. We update the expected sensitivities of Neutrino Factories to the “atmospheric” (anti-)neutrino parameters using an optimized setup. A dedicated β-Beam facility, in combination with a SPMIN reactor experiment, could give excellent sensitivities also to the “solar” parameters, for neutrinos and anti-neutrinos respectively. A signal of a different mass matrix for neutrinos and anti-neutrinos would imply CPT violation and non-locality of the underlying particle theory.  相似文献   

19.
We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This “minimal” inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.  相似文献   

20.
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on θ13θ13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles θ13θ13 and θ12θ12 are discussed in detailed. Finally, we show that, even for a vanishing θ13θ13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号