首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
空间声的目的是通过电声的手段重放声音空间信息,给聆听者再现特定的空间听觉感知。它在文化生活、通信、多媒体和虚拟现实等方面以及航空、航天等领域都有重要的应用。国内对空间声的研究起步于1958年,五十多年来进行了大量的基础研究工作,是和国际上的发展前沿相接轨的。本文在回顾空间声的基本原理与分类、国际上空间声发展历史的基础上,侧重评述了国内空间声研究和应用的历史、发展与现状,并展望了今后的发展前景。  相似文献   

2.
A simplified rainout model is presented in this study. According to this model formulations have been derived to relate the exposure rate on the ground to the radon progeny concentration in raindrops as well as the radon concentration in cloud air. By normalizing the saturation exposure rate of the calculation to the HPIC measured value and by the use of reasonably assumed values for some other parameters, the radon progeny concentration in raindrops as well as the radon concentration in cloud air has been determined.  相似文献   

3.
Random Graphs and Mean Field Percolation are two names given to the most general mathematical model of systems composed of a set of connected entities. It has many applications in the study of real life networks as well as physical systems. The model shows a precisely described phase transition, but its solution for finite systems was yet unresolved. However, atomic nuclei, as well as other mesoscopic objects (e.g. molecules, nano-structures), cannot be considered as infinite and their fragmentation does not necessarily occur close to the transition point. Here, we derive for the first time the exact solution of Mean Field Percolation for systems of any size, as well as provide important information on the internal structure of Random Graphs. We show how these equations can be used as a basis to select non-trivial correlations in systems and thus to provide evidence for physical phenomena.  相似文献   

4.
Classical mechanics in phase space as well as quantum mechanics in Hilbert space lead to states and observables but not to objects that may be considered as carriers of observable quantities. However, in both cases objects can be constituted as new entities by means of invariance properties of the theories in question. We show, that this way of reasoning has a long history in physics and philosophy and that it can be traced back to the transcendental arguments in Kant’s critique of pure reason.  相似文献   

5.
为测量中国锦屏地下实验室(China JinPing underground Laboratory,CJPL)极低通量的中子本底,需要建造大型快中子液体闪烁体探测器。建造探测器需要选用低放射性本底材料,并且化学性质稳定,不与液体闪烁体发生反应而影响液体闪烁体(EJ-335)的性能。为此,建造了小型液闪探测器,在其中分别放入聚四氟乙烯、无氧铜、氟橡胶、全氟醚橡胶这4种材料进行长期浸泡,并分别进行了如下测试:液闪长时间浸泡各种材料前后液闪的吸收光谱测试;用60Co γ源检测小型液闪探测器光产额随时间的变化情况;用Am-Be中子源检验探测器在浸泡前后的n-γ甄别性能。最终实验结果表明,聚四氟乙烯和全氟醚这2种材料与液闪有很好的兼容性,可作为大型快中子液闪探测器的容器和密封圈的备选材料。In order to measure the flux and spectrum of neutron background which is extremely low in China JinPing underground Laboratory (CJPL), liquid scintillator detector with large scale used to detect fast neutron need to be fabricated. Surrounding materials used in detector require the excellent performance, such as low radioactivity as well as stable chemical properties, which do not react with liquid scintillator, so as to avoid affecting the performance of detector. Polytetrafluoroethylene(PTFE), highly purified no-oxygen copper, fluororubber and perfluoroelastomer had been put in a small detector and soaked for a long time. The change of absorption spectrum and light yield along with time as well as the performance of n-γ discrimination after soaked were tested. The results show that PTFE and Perfluoroelastomer are compatible with liquid scintillator, which offers a reference for the selection of material used in container and seal of liquid scintillator detector used to detect fast neutron.  相似文献   

6.
At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type‐2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X‐ray absorption spectroscopy performed at the Ca K‐absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.  相似文献   

7.
提出了一种以样品光谱类间相关系数之和最小为准则进行光谱波长逐步筛选的方法(stepwise selection basing on minimum sum of correlation coefficients, SMCC),以类间距离与类内距离和的比值最大化(符合分析者主观预期目标)作为定性分析中特征波长筛选效果的评价依据,并使用红塔集团提供的2012年17种不同类型工业分级烟叶作为试验样品,以验证筛选方法的有效性。研究表明,采用CO1分级烟叶光谱作为参照类别,筛选出10个特征波长点:采用特征波长计算得到的类内欧氏距离的平均值为采用全部波长计算得到的平均值的1.69倍,采用特征波长计算得到的类间欧氏距离的平均值为采用全部波长计算得到的平均值的3.70倍,采用特征波长计算得到的类间欧氏距离与类内欧氏距离和的比值的平均值为采用全部波长计算得到的平均值的2.21倍。特征波长的类间与类内欧氏距离和的比值增大,说明筛选出来的特征波长能更加有效的表达不同类间的远近关系以及同一类内的离散度,SMCC算法是一种有效的、可应用于近红外光谱定性分析中的特征波长筛选方法。  相似文献   

8.
An optical measuring technique is presented allowing the exact in‐situ measurement of local particle flux densities in a confined channel flow by counting single particles penetrating an optically well defined measuring volume. This enables a precise flux determination up to the direct vicinity of planar walls. The measurement set‐up and its calibration as well as the whole test facility are described in detail. This measurement technique is used to study the particle transport in electrostatic precipitators. Exemplarily, results of particle flux profiles as well as precipitation, as gained from balances of parts of the precipitator channel, are presented. Furthermore, the possibility to determine particle velocity fluctuations is demonstrated.  相似文献   

9.
The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.  相似文献   

10.
Sputtering studies with the Monte Carlo Program TRIM.SP   总被引:2,自引:0,他引:2  
The Monte Carlo Program TRIM.SP (sputtering version of TRIM) was used to determine sputtering yields and energy and angular distributions of sputtered particles in physical (collisional) sputtering processes. The output is set up to distinguish between the contributions of primary and secondary knock-on atoms as caused by in- and outgoing incident ions, in order to get a better understanding of the sputtering mechanisms and to check on previous theoretical models. The influence of the interatomic potential and the inelastic energy loss model as well as the surface binding energy on the sputtering yield is investigated. Further results are sputtering yields versus incident energy and angle as well as total angular distributions of sputtered particles and energy distributions in specific solid angles for non-normal incidence. The calculated data are compared with experimental results as far as possible. From this comparison it turns out that the TRIM.SP is able to reproduce experimental results even in very special details of angular and energy distributions.  相似文献   

11.
Polypropylene (PP) /poly(trimethylene terephthalate), (PTT), binary blends in the presence of two interfacial modifier as well as two organically modified nanoclay additives were studied in terms of mechanical and morphological characteristics. Scanning electron microscopy confirmed the incompatibility of the system which was solved to some extent through incorporating the nanoclay as well as functional compatibilizers. An evaluation of the specimens via static mechanical tests in tensile mode gave credence to the assumption that the higher the PTT content, the higher the mechanical performance would be. Furthermore, the compatibilizer-containing blends not only exhibited higher toughness, but also possessed enhanced stiffness when a maleated compatibilizer was added. The tensile modulus was promoted further in the presence of clay nanoparticles; however, toughness was somewhat sacrificed. The Barentsen as well as Halpin-Tsai models were found to describe the binary blends modulus. The reinforcing impact of the nanoclay was exploited to a greater degree in the presence of the compatibilizer.  相似文献   

12.
快速的城市化进程使得当前城市普遍面临绿地面积减少、抗自然灾害能力下降等问题。针对城市资源与需求的矛盾,对现有屋顶绿化自动管理系统进行了研究,设计了一种基于无线传感器网络的屋顶绿化智慧管理系统。通过实时获取光照强度等植物生长环境参数;使用层次分析法对植物生长环境进行评估与分析,提出了量化环境适宜度指标,通过反馈控制系统,实现屋顶绿化植物的智慧管理。实验结果表明,与传统屋顶绿化方法相比较,系统可以提高24%的植物存活率,同时可实现屋顶降温20%的目标。系统具有成本低、自适应管理等优点,可以广泛应用于当前我国的城市屋顶绿化中,也可以为学界和业界的相关研究提供参考。  相似文献   

13.
Total synthesis is frequently compared to climbing as it provides a suitable route to reach a high point from the floor, the complex natural product from simple and commercially available materials. The total synthesis has a privileged position of trust in confirming the hypothetical complex structures of natural products despite sophisticated analytical and spectroscopic instrumentation and techniques that are available presently. Moreover, total synthesis is also useful to prepare rare bioactive natural products in the laboratory as several bioactive secondary metabolites are obtained in small quantities from natural sources. The artistic aspect of the total synthesis of bioactive natural products continues to be praised today as it may provide environmental protection through the concept of green or clean chemistry. The use of ultrasound waves as a non-polluting source of energy is of great interest in the field of sustainable and pharmaceutical chemistry as it differs from conventional energy sources in terms of reaction rates, yields, selectivities, and purity of the products. The present review highlights the application of ultrasound as a green tool in the total synthesis of bioactive natural products as well as this article is also aimed to offer an overview of natural sources, structures, and biological activities of the promising natural products for the first time from 2005 to 2020 elegantly.  相似文献   

14.
Among all particle separation approaches, dielectrophoresis actuators which use electric properties difference between particles, have turned into strong separating tools. This way, the particles in the fluid within non-uniform electric field experience the dielectrophoresis force. The amount and direction of this force depend on the fluid and particle polarization, particle size and electric field gradient. In this paper after presenting governing equations concerning the dielectrophoresis phenomenon, a microfluidic actuator introduced in which an interdigitated electrode pattern is applied in. Voltage, pitch, and width to pitch ratio of electrode as well as channel height are of the most important geometrical parameters of this actuator whose individual effect on particles separation was investigated using finite element analysis (FEM). The simulation results showed that if the actuator is intended to work in the efficient conditions, channel height and electrodes pitch should be near to each other, height needs to be as minimum as possible while voltage as maximum as possible in order to reach to the least time duration and the highest quantity for particles separation. Then, using theoretical equations and simulation results, a flowchart is introduced to design and optimize dielectrophoresis separation actuators. Finally, experimental results for k562 cell separation, as a biological particle, from Polystyrene, as a standard particle, is presented. In the fabricated actuator recovery and purity efficiency are 93% and about 100% respectively.  相似文献   

15.
16.
Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of modeling thermal conductivity of nanofluids has been explored which is found to agree excellently with a wide range of experimental data obtained by the present authors as well as the data published in literature  相似文献   

17.
The main emphasis of this review is on thermal modelling and prediction of laser welding in metals. However as similar techniques are employed to model conventional welding processes such as arc, resistance and friction, as well as related processes such as alloying, cladding and surface hardening, part of this review is given over to the modelling of these processes where appropriate. The time frame of the review is up to the year 2002.  相似文献   

18.
Graphene/ZnO hybrid was used, for the first time, to fabricate a highly selective and sensitive graphene based gas sensor by a combination of electromechanical and electrochemical characteristics of the graphene. ZnO nanowires in our fabricated sensor have two important roles: as the reductant of graphene oxide to obtain graphene and as an efficient electromechanical actuator due to their piezoelectric properties. To investigate the operation of the fabricated sensor as a gas sensor, a selected set of chemical vapors were introduced to the structure. It was found that chemical vapors change the resonance frequency of the graphene/ZnO structure, as well as the electrical resistivity of the sensor. The observed variation of the mechanical and electrical characteristics of the graphene/ZnO in response to gas exposure entitles the graphene/ZnO based sensor as a highly selective/sensitive device for gas sensing applications with distinctive signatures for different gas species.  相似文献   

19.
Sonochemistry, an almost a century old technique was predominantly employed in the cleaning and extraction processes but this tool has now slowly gained tremendous attention in the synthesis of nanoparticles (NPs) where particles of sub-micron have been produced with great stability. Following this, ultrasonication techniques have been largely employed in graphene synthesis and its dispersion in various solvents which would conventionally take days and offers poor yield. Ultrasonic irradiation allows the production of thin-layered graphene oxide (GO) and reduced graphene oxide (RGO) of up to 1 nm thickness and can be produced in single layers. With ultrasonic treatment, reactions were made easy whereby graphite can be directly exfoliated to graphene layers. Oxidation to GO can also be carried out within minutes and reduction to RGO is possible without the use of any reducing agents. In addition, various geometry of graphene can be produced such as scrolled graphene, sponge or foam graphene, smooth as well as those with rough edges, each serving its own unique purpose in various applications such as supercapacitor, catalysis, biomedical, etc. In ultrasonic-assisted reaction, deposition of metal NPs on graphene was more homogeneous with custom-made patterns such as core-shell formation, discs, clusters and specific deposition at the edges of graphene sheets. Graphene derivatives with the aid of ultrasonication are the perfect catalyst for various organic reactions as well as an excellent adsorbent. Reactions which used to take hours and days were significantly reduced to minutes with exceedingly high yields. In a more recent approach, sonophotocatalysis was employed for the combined effect of sonication and photocatalysis of metal deposited graphene. The system was highly efficient in organic dye adsorption. This review provides detailed fundamental concepts of ultrasonochemistry for the synthesis of graphene, its dispersion, exfoliation as well as its functionalization, with great emphasis only based on recent publications. Necessary parameters of sonication such as frequency, power input, sonication time, type of sonication as well as temperature and dual-frequency sonication are discussed in great length to provide an overview of the resultant graphene products.  相似文献   

20.

Background  

Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号