首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this review phenomenological consequences of the Standard Model extension by means of new spin-1 chiral fields with the internal quantum numbers of the electroweak Higgs doublets are summarized. The prospects for resonance production and detection of the chiral vector Z* and W*± bosons at the LHC energies are considered on the basis of quantitative simulations within the CompHEP/CalcHEP package. The Z* boson can be observed as a Breit-Wigner resonance peak in the invariant dilepton mass distributions in the same way as the well-known extra gauge Z?? bosons. However, the Z* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow one to distinguish them from other heavy neutral resonances. In 2010, with 40 pb?1 of the LHC proton-proton data at the energy 7 TeV, the ATLAS detector was used to search for narrow resonances in the invariant mass spectrum of e + e ? and ??+??? final states and high-mass charged states decaying to a charged lepton and a neutrino. No statistically significant excess above the Standard Model expectation was observed. The exclusion mass limits of 1.15 and 1.35 TeV/c 2 were obtained for the chiral neutral Z* and charged W* bosons, respectively. These are the first direct limits on the W* and Z* boson production. Based on the above, a novel strategy for the chiral boson search in the LHC dijet data is discussed. For almost all currently considered exotic models the relevant signal is expected in the central dijet rapidity region y 1,2 ? 0 and |y 1 ? y 2| ? 0. On the contrary, the chiral bosons do not contribute to this region but produce an excess of dijet events far away from it. In particular, for these bosons the appropriate kinematical restrictions lead to a dip in the centrality ratio distribution over the dijet invariant mass instead of a bump expected in the most exotic models.  相似文献   

2.
We report the results of a search for a W' boson produced in pp collisions at a center-of-mass energy of 1.8 TeV using a 107 pb-1 data sample recorded by the Collider Detector at Fermilab. We consider the decay channel W'-->&munumu and search for anomalous production of high transverse mass munumu lepton pairs. We observe no excess of events above background and set limits on the rate of W' boson production and decay relative to standard model W boson production and decay using a fit of the transverse mass distribution observed. If we assume standard model strength couplings of the W' boson to quark and lepton pairs, we exclude a W' boson with invariant mass less than 660 GeV/c2 at 95% confidence level.  相似文献   

3.
The latest CDF anomaly, the excess of dijet events in the invariant-mass window 120-160 GeV in associated production with a W boson, can be explained by a baryonic Z' model in which the Z' boson has negligible couplings to leptons. Although this Z' model is hardly subject to the Drell-Yan constraint from Tevatron, it is constrained by the dijet data from UA2 (√s=630 GeV), and the precision measurements at LEP through the mixing with the SM Z boson. We show that under these constraints this model can still explain the excess in the M(jj)~120-160 GeV window, as well as the claimed cross section σ(WZ')~4 pb. Implications at the Tevatron would be the associated production of γZ', ZZ', and Z'Z' with the Z'→jj. We show that with tightened jet cuts and improved systematic uncertainties both γZ'→γjj and ZZ'→?(+)?(-) jj channels could be useful to probe this model at the Tevatron.  相似文献   

4.
《Nuclear Physics B》2001,592(1-2):35-54
We examine the prospects of detecting sfermions at a gamma–gamma collider. Once produced, a slepton can decay into a pair of quarks (jets) through R-parity violating interactions. Similarly, a squark may decay into a lepton–quark pair. Analyzing the corresponding Standard Model backgrounds, namely 4-jet and dilepton plus dijet final states respectively, we show that the sfermion can be detected almost right upto the kinematic limit and its mass determined to a fair degree of accuracy. Similar statements also hold for nonsupersymmetric leptoquarks and diquarks.  相似文献   

5.
The CDF Collaboration reported an excess in the production of two jets in association with a W . We discuss constraints on possible new particle state interpretations of this excess. The fact of no statistically significant deviation from the SM expectation for Z +dijet events in CDF data disfavors the new particle explanation. We show that the nucleon intrinsic strange quarks provide an important contribution to the W boson production in association with a single top quark production. Such W +t single top quark production can contribute to the CDF W +dijet excess, thus the nucleon intrinsic quarks can provide a possible explanation to the CDF excess in W +dijet but not in Z +dijet events.  相似文献   

6.
We measure the mass of the top quark using top-quark pair candidate events in the lepton+jets channel from data corresponding to 1 fb;{-1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider. We use a likelihood technique that reduces the jet energy scale uncertainty by combining an in situ jet energy calibration with the independent constraint on the jet energy scale (JES) from the calibration derived using photon+jets and dijet samples. We find the mass of the top quark to be 171.5+/-1.8(stat.+JES)+/-1.1(syst.) GeV.  相似文献   

7.
8.
We present a study of the dijet invariant mass spectrum in events with two jets produced in association with a W boson in data corresponding to an integrated luminosity of 4.3 fb(-1) collected with the D0 detector at √s = 1.96 TeV. We find no evidence for anomalous resonant dijet production and derive upper limits on the production cross section of an anomalous dijet resonance recently reported by the CDF Collaboration, investigating the range of dijet invariant mass from 110 to 170 GeV/c(2). The probability of the D0 data being consistent with the presence of a dijet resonance with 4 pb production cross section at 145 GeV/c(2) is 8×10(-6).  相似文献   

9.
We assess the potential of detecting a charged Higgs boson of the MSSM at the LHC via its decays into a chargino and a neutralino. We focus our attention on the region of parameter space with and , where identification of the via other decay modes has proven to be ineffective. Searching for means to plug this hole, we simulate the decays and – the former can yield a single hard lepton (from the chargino decay) while the latter can yield three leptons (from the chargino and neutralino decays). Coupled with the dominant top quark + charged Higgs boson production mode, the resulting signature is one or three hard, isolated leptons, substantial missing transverse momentum and a reconstructed (via a 3-jet invariant mass) top quark. The single lepton channel is swamped by background processes; however, with suitable cuts, a trilepton signal emerges. While such a signal suffers from a low number of surviving events (after cuts) and is dependent on several MSSM input parameters (notably , and slepton masses), it does fill at least some of the void left by previous investigations. Received: 21 October 2000 / Published online: 23 February 2001  相似文献   

10.
We present a search for Higgs bosons decaying into bb and produced in association with W bosons in pp collisions at square root of s = 1.96 TeV. This search uses 320 pb(-1) of the data set accumulated by the upgraded Collider Detector at Fermilab. Events are selected that have a high-transverse momentum electron or muon, missing transverse energy, and two jets, at least one of which is consistent with the hadronization of a b quark. Both the number of events and the dijet mass distribution are consistent with standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson or any new particle with similar decay kinematics. These upper limits range from 10 pb for mH = 110 GeV/c2 to 3 pb for mH = 150 GeV/c2.  相似文献   

11.
We compute the Omicron(alpha(2)(s)) QCD corrections to the fully differential cross section pp --> WX --> lnuX, retaining all effects from spin correlations. The knowledge of these corrections makes it possible to calculate with high precision the boson production rate and acceptance at the CERN Large Hadron Collider (LHC), subject to realistic cuts on the lepton and missing energy distributions. For certain choices of cuts we find large corrections when going from next-to-leading order (NLO) to next-to-next-to-leading order in perturbation theory. These corrections are significantly larger than those obtained by parton-shower event generators merged with NLO calculations. Our result may be used to assess and significantly reduce the QCD uncertainties in the many studies of boson production planned at the LHC.  相似文献   

12.
We study an effective theory beyond the standard model(SM) where either of the two additional gauge singlets, a Majorana fermion and a real scalar, constitutes all or some fraction of dark matter. In particular, we focus on the masses of the two singlets in the range of O(10) MeV-O(10) GeV with a neutrino portal interaction, which plays an important role not only in particle physics but also in cosmology and astronomy. We point out that the thermal dark matter abundance can be explained by(co-)annihilation, where the dark matter with a mass greater than 2 GeV can be tested in future lepton colliders, CEPC, ILC, FCC-ee and CLIC, in the light of the Higgs boson invisible decay. When the gauge singlets are lighter than O(100) MeV, the interaction can affect the neutrino propagation in the universe due to its annihilation with cosmic background neutrino into the gauge singlets. Although in this case it can not be the dominant dark matter, the singlets are produced by the invisible decay of the Higgs boson at such a rate which is fully within reach of future lepton colliders. In particular, a high energy cutoff of cosmic-ray neutrino,which may account for the non-detection of Greisen-Zatsepin-Kuzmin(GZK) neutrino or the non-observation of the Glashow resonance, can be set. Interestingly, given the cutoff and the mass(range) of WIMPs, a neutrino mass can be"measured" kinematically.  相似文献   

13.
If a new sequential heavy lepton L exists with mass below that of the W boson, it will give rise to the following decay chains: W → LνLwith LeνeνL or LQL. We critically study, and quantify, the possibility of identifying this heavy lepton signal against the various backgrounds in high energy p?p collision. We find that the leptonic decay signal is plagued by serious b?b, W → eν, and W → τν backgrounds, whereas the hadronic decay mode leads to a distinctive signature, after selected cuts are applied. We discuss how the mass of such a lepton may be determined.  相似文献   

14.
《Nuclear Physics B》1988,309(4):597-611
The Lindé-Weinberg bound [1] on the mass of the Higgs boson does not apply if one of the fermions of the standard model is very massive [2] or in non-standard models with multiple Higgs particles [1]. We consider both the standard model and a common extension thereof to two or more Higgs doublets. If the Higgs responsible for lepton masses is very light, one reliable method for indirectly detecting it would be a more careful measurement of g − 2 for the muon. More direct is the search for Higgs particles detected in association with τ pairs in existing or defunct e+e colliders operating well below the Z mass. We analyze both methods in detail, and find that data from several existing colliders could eliminate large portions of parameter space - or, perhaps, find the Higgs boson.  相似文献   

15.
We suggest that the Higgs could be discovered at the Tevatron or the LHC (perhaps at the LHCb detector) through decays with one or more substantially displaced vertices from the decay of new neutral particles. This signal may occur with a small but measurable branching fraction in the recently-described “hidden valley” models, hep-ph/0604261; weakly-coupled models with multiple scalars, including those of hep-ph/0511250, can also provide such signals, potentially with a much larger branching fraction. This decay channel may extend the Higgs mass reach for the Tevatron. Unusual combinations of b jets, lepton pairs and/or missing energy may accompany this signal.  相似文献   

16.
The Inert Doublet Model(IDM) is one of the many beyond Standard Model scenarios with an extended scalar sector, which provide a suitable dark matter particle candidate. Dark matter associated visible particle production at high energy colliders provides a unique way to determine the microscopic properties of the dark matter particle. In this paper, we investigate that the mono-W + missing transverse energy production at the Large Hadron Collider(LHC),where W boson decay to a lepton and a neutrino. We perform the analysis for the signal of mono-W production in the IDM and the Standard Model(SM) backgrounds, and the optimized criteria employing suitable cuts are chosen in kinematic variables to maximize signal significance. We also investigate the discovery potential in several benchmark scenarios at the 14 TeV LHC. When the light Z_2 odd scalar higgs of mass is about 65 GeV, charged Higgs is in the mass range from 120 GeV to 250 GeV, it provides the best possibility with a signal significance of about 3σ at an integrated luminosity of about 3000 fb~(-1).  相似文献   

17.
《Physics letters. [Part B]》1999,459(4):607-614
The hadronic tau decay channel offers by far the best signature for heavy charged Higgs boson search at the LHC in the large tanβ region. By exploiting the distinct polarization of the tau and its large transverse mass, along with the accompanying missing–pT, one can probe for a charged Higgs boson up to a mass of about 600 GeV in an essentially background-free environment. The transverse mass distribution of the tau jet also provides a fairly unambiguous estimate of the charged Higgs boson mass.  相似文献   

18.
A simple explanation of the W+dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of σ10−40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.  相似文献   

19.
《Nuclear Physics B》1995,437(3):520-540
We study the signals and backgrounds for a heavy Higgs boson in the processes γγWWWW, γWWZZ at the proton linear collider. The results are based on the complete tree-level SM calculation for these reactions. We show that the invariant mass spectrum of central WW, ZZ pairs is sensitive to the signal from Higgs boson with a mass up to 1 TeV linear collider for integrated luminosity of 300 fb−1. At 1.5 TeV PLC Higgs boson with a mass up to 700 GeV can be studied. The nonresonant longitudinal gauge boson scattering (mH = ∞) can be detected in photon-photon collisions at e+e center-of-mass energy of 3 TeV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号