首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
荧光素染料与富马酸酮替芬的光谱研究及应用   总被引:2,自引:1,他引:1  
在弱酸性缓冲介质中,富马酸酮替芬和某些卤代荧光素类染料(曙红Y、荧光桃红和曙红B)借助静电引力和疏水作用力形成离子缔合物,引起共振光散射光谱、吸收光谱及荧光光谱的变化。实验表明,曙红Y体系灵敏度最高。对曙红Y、荧光桃红和曙红B体系,线性范围分别为0.12~8.4μg/mL、0.24~8.4μg/mL和0.18~6.0μg/mL,检测限分别为12.72 ng/mL、12.52μg/mL和18.21μg/mL。方法已用于分析富马酸酮替芬片剂、血清及尿样。  相似文献   

2.
A rapid and sensitive high-performance liquid chromatography (LC) method was developed for the simultaneous determination of metronidazole (MNZ), dimetridazole (DMZ), ronidazole (RNZ), tinidazole (TNZ), and 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI) in honey. After extraction with ethyl acetate and evaporation, the residue containing the nitroimidazoles was dissolved in ethyl acetate-hexane and subjected to solid-phase extraction cleanup by amine extraction columns. The effluent was evaporated to dryness, and residues were dissolved and determined by LC with an ultraviolet detector set at 315 nm. The limits of detection were 1.0-2.0 ng/g for MNZ, DMZ, RNZ, TNZ, and HMMNI in honey. Average recoveries ranged from 71.5-101.4% in honey fortified at 10, 20, 50, and 100 ng/g. The method was validated for the analysis of real honey samples.  相似文献   

3.
A method was developed for determination of residues of 446 pesticides in fruits and vegetables through the use of cleanup by a 3-cartridge solid-phase extraction-gas chromatography/ mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Fruit and vegetable samples (20 g) were extracted with 40 mL acetonitrile, salted out, and centrifuged. Half of the supernatant was passed into an Envi-18 cartridge, eluted with acetonitrile, and cleaned up with Envi-Carb and aminopropyl Sep-Pak cartridges in series after concentration of the eluates. Pesticides were eluted with acetonitrile-toluene (3 + 1, v/v), and eluates were concentrated to 0.5 mL and then added into internal standards after solvent exchange with 2 mL hexane and used for determination of 383 pesticides by GC/MS. The other half of the supernatant was concentrated to 1 mL and cleaned up with Envi-Carb and aminopropyl Sep-Pak cartridges in series. Pesticides were eluted with acetonitrile-toluene (3 + 1, v/v), and the eluates were concentrated to 0.5 mL, dried with nitrogen gas, diluted to 1.0 mL with acetonitrile-water (3 + 2, v/v), and used for determination of 63 pesticides by LC/MS/MS. The limit of detection for the method was 0.2-600 ng/g depending on the individual pesticide. In the method, fortification recovery tests at high, medium, and low levels were conducted on 6 varieties of fruits and vegetables, i.e., apples, oranges, grapes, cabbage, tomatoes, and celery, with average recoveries falling within the range of 55.0-133.8% for 446 pesticides, among which average recoveries between 60.0-120.0% accounted for 99% of the results. The relative standard deviation was between 2.1-39.1%, of which a relative standard deviation of 2.1-25.0% made up 96% of the results. Experiments proved that the method was applicable for determination of residues of 446 pesticides in fruit and vegetables.  相似文献   

4.
A gas chromatography/mass spectrometry (GC/MS) method with immunoaffinity cleanup was developed for the determination of zeranol and related compounds, taleranol, zearalanone, and alpha-zearalenol in bovine muscle. Muscle samples were extracted with methanol and cleaned up with immunoaffinity chromatography (IAC) columns containing monoclonal antibodies raised against zeranol coupled to CNBr-activated Sepharose 4B. After derivatization, the compounds were analyzed by GC/MS. The dynamic column capacities for zeranol, taleranol, zearalanone, and alpha-zearalenol were 2639.7, 2840.3, 2731.5, and 2736.3 ng/mL Sepharose gel, respectively. The limits of detection and quantification were 0.5 and 1.0 ng/g, respectively, for all 4 compounds. Mean recoveries were 79.6-110.7% with coefficients of variation of 3.2-11.4% at spiked levels of 1.0-5.0 ng/g. This IAC-GC/MS method may be used for the determination of zeranol, taleranol, zearalanone, and alpha-zearalenol residues in bovine muscle, and possibly other tissues.  相似文献   

5.
The present investigation was carried out to appraise the levels of total phenols and vitamin C as well as antioxidant potential at three different ripening stages (un-ripe, semi-ripe and fully-ripe) of guava (Psidium guajava L.) fruit collected from three different geographical regions of Pakistan (Islamabad, Faisalabad and Bhakkar). The antioxidant potential of guava fruit extracts was assessed by means of different in-vitro antioxidant assays, namely inhibition of peroxidation in linoleic acid system, reducing power and radical scavenging capability. Overall, fruit at the un-ripe stage (G1) exhibited the highest levels of TPC, TFC, reducing power and DPPH radical scavenging activity, followed by the semi-ripe (G2) and fully-ripe (G3) stages. On the other hand, vitamin C content increased as the fruit maturity progressed, with highest value seen at the fully-ripe stage (G3) followed by the semi-ripe (G2) and un-ripe stage (G1). The concentration of vitamin C in fruits varied as: Faisalabad (136.4-247.9 mg 100 g?1), Islamabad (89.7-149.7 mg 100 g?1) and Bhakkar (73.1-129.5 mg 100 g?1). The results showed that different stages of maturation and geographical locations had profound effects on the antioxidant activity and vitamin C contents of guava fruit.  相似文献   

6.
Direct sample introduction (DSI), or "dirty sample injection," was investigated in the determination of 22 diverse pesticide residues in mixed apple, green bean, and carrot extracts by benchtop gas chromatography/tandem mass spectrometry (DSI/GC/MS-MS). The targeted pesticides, some of which were incurred in the samples, included chlorpyrifos, azinphos-methyl, parathion-methyl, diazinon, terbufos, p,p'-DDE, endosulfan sulfate, carbofuran, carbaryl, propargite, bifenthrin, dacthal, trifluralin, metalaxyl, pendimethalin, atrazine, piperonyl butoxide, diphenylamine, vinclozolin, chlorothalonil, quintozene, and tetrahydrophthalimide (the breakdown product of captan). The analytical DSI method entailed the following steps: (1) blend 30 g sample with 60 mL acetonitrile for 1 min in a centrifuge bottle; (2) add 6 g NaCl and blend 30 s; (3) centrifuge for 1-2 min; (4) add 5 mL upper layer to 1 g anhydrous MgSO4 in a vial; and (5) analyze 11 microL extract, using DSI/GC/MS-MS. Sample cleanup is not needed because GCIMS-MS is exceptionally selective for the targeted analytes, and nonvolatile coextracted matrix components do not contaminate the injector or the GC/MS-MS system. Average recoveries of the pesticides were 103 +/- 7% with relative standard deviations of 14 +/- 5% on average, and limits of detection were <2 ng/g for nearly all pesticides studied. The DSI/GC/ MS-MS approach for targeted pesticides is quantitative, confirmatory, sensitive, selective, rugged, rapid, simple, and inexpensive.  相似文献   

7.
As the pesticide and its metabolite residues in processed fruits could become a significant route of human exposure. The work presented herein focuses on developing a feasible quick, easy, cheap, effective, rugged, and safe method with improved extraction and cleanup system for the determination of imidacloprid, acetamiprid, thiamethoxam, and clothianidin (a metabolite of thiamethoxam) in canned fruits. The low toxic solvent ethanol was used to extract the analytes, and ammonium sulfate was used to promote phase separation. Moreover, the carboxylated multi-walled carbon nanotube acted as the clean-up sorbent for the removal of high solubility impurities. The proposed method was validated with fortified real samples at different concentration levels (20–200 μg/kg). Recoveries obtained from three spiked levels (20, 50, and 200 μg/kg) ranged from 74.9 to 86.4% with relative standard deviations of the intra-day and inter-day in the range of 0.8–5.5 and 2.0–7.1%, respectively. The limits of detection ranged from 0.2 to 0.5 and 0.2 to 0.6 μg/kg for orange and peach, respectively. The results demonstrated that the proposed method could be considered appropriate, and comparatively lower toxic for the analysis of neonicotinoid pesticide residues in canned fruit.  相似文献   

8.
A novel, simple and sensitive high-performance liquid chromatographic method for the determination of the potato glycoalkaloids, alpha-solanine and alpha-chaconine, based on the chemiluminescent reaction of tris(2,2'-bipyridine)ruthenium(III) has been developed. The calibration graph was linear in the range of 5 ng/ml-10 microg/ml for both alpha-solanine and alpha-chaconine. The detection limits of alpha-solanine and alpha-chaconine were 1.2 and 1.3 ng/ml, respectively. This method was successfully applied to a potato tuber sample without cleanup, pre-concentration, and derivatization steps. The recoveries (mean +/- standard deviation, %) of alpha-solanine and alpha-chaconine spiked in tuber pith at 10 microg/g (n = 6) were 101.0 +/- 4.4% and 103.6 +/- 7.1%, respectively.  相似文献   

9.
制备了一种新型的聚苯乙烯纳米纤维, 将其作为固相萃取吸附剂装填制成固相萃取柱, 与高效液相色谱联用建立了干辣椒、 水果饮料及红酒中罗丹明B的定量分析方法. 高效液相色谱以3 g/L磷酸缓冲液-甲醇混合溶液(体积比3∶7, pH=7.0)为流动相. 通过对提取条件的优化, 得到该方法对干辣椒中罗丹明B的检出限为0.1 ng/g, 最低定量限为0.6 ng/g; 对水果饮料和红酒中罗丹明B的检出限均为0.2 ng/mL, 最低定量限均为0.5 ng/mL. 此方法对干辣椒中罗丹明B的提取回收率为98.2%~110.3%; 对水果饮料中罗丹明B的提取回收率为94.6%~102.2%; 对红酒中罗丹明B的提取回收率为90.4%~104.6%. 该方法的线性范围为1~100 ng/mL(ng/g), 相对标准偏差为2.3%~9.0%. 该方法灵敏度高、 选择性好, 可用于干辣椒、 水果饮料及红酒中罗丹明B的定量分析.  相似文献   

10.
基于在线净化液相色谱-四极杆/静电场轨道阱高分辨质谱技术建立了快速测定动物源食品中地克珠利、妥曲珠利、妥曲珠利砜和妥曲珠利亚砜残留的分析方法。样品采用乙腈提取,经Cyclone在线净化柱净化后,将富集的目标物洗脱转至C_(18)分析柱,经色谱分离后,采用四极杆/静电场轨道阱高分辨质谱以Full Scan/dd MS2模式进行检测。4种化合物在0.5~50 ng/m L范围内呈良好线性,相关系数均大于0.999 4,方法的定量下限(LOQ)为2μg/kg。待测物在4种基质中的加标回收率为80.2%~110.5%,相对标准偏差为2.8%~9.7%。该方法简化了前处理过程,消除了基质干扰。利用精确质量数、保留时间、同位素峰比、二级碎片多个定性信息能够实现快速确证测定。  相似文献   

11.
A liquid chromatography (LC) method is presented for the quantitative determination of malachite green (MG) in salmon. MG and leucomalachite green (LMG) residues were extracted from salmon tissue with ammonium acetate buffer and acetonitrile, and then isolated by partitioning into dichloromethane. LMG was quantitatively oxidized to the chromic MG by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Samples were then cleaned up by solid-phase extraction with alumina and propylsulfonic acid phases. Extracts were analyzed for MG by LC with visible detection at 618 nm using isocratic elution and a C18 column. The method was validated in 35 farm-raised salmon (Salmo salar) tissues fortified at 1, 2, 4, and 10 ng/g (ppb) with an average recovery of 95.4% and a relative standard deviation of +/- 11.1%, and in 5 canned salmon (Oncorhynchus gorbuscha) samples fortified at 10 ng/g with an average recovery of 88.9 +/- 2.6%. This study also included the determination of MG and LMG residues in tissues from salmon that had been treated with MG MG was quantitatively determined at the method detection limit of 1 ng/g.  相似文献   

12.
建立了气相色谱-串联质谱测定水果中50种农药残留的分析方法。考察了无缓冲盐体系、乙酸盐缓冲体系和柠檬酸盐缓冲体系提取水果中50种农药的有效性,并对比了乙二胺-N-丙基硅烷(PSA)吸附剂净化和SinChERS-Nano柱净化两种净化方法。结果表明,存在缓冲盐体系的QuEChERS方法提取效果更好且两种缓冲盐体系无明显差别,最后选择乙酸盐缓冲体系;通过比较净化效果和总离子流色谱图,发现SinChERS-Nano柱净化的效果更好。对50种农药进行加标回收试验,发现甲胺磷、乙酰甲胺磷、氧化乐果、三氯杀螨醇、百菌清这5种农药回收率为71.2~129.2%,其他45种农药的回收率为79.1~122.3%。方法的检出限(LOD)为0.3~3.0 μ g/kg;定量限(LOQ)为1.0~10.0 μ g/kg。该方法适用于柑橘、葡萄等水果中50种农药残留的快速筛查分析。  相似文献   

13.
建立了柑橘及柑橘精油中吡虫啉、多菌灵、咪鲜胺和高效氯氰菊酯4种农药的多残留分析方法。前处理方法以乙腈为提取剂、N-丙基乙二胺(PSA)为分散净化剂的QuEChERS方法,并利用超高效液相色谱-串联质谱(UPLC-MS/MS)在多反应离子监测模式(MRM)下进行检测,外标法定量。结果表明:在0.01~1.00mg/kg添加水平范围内,4种农药的平均回收率为72.6%~113.3%;相对标准偏差(RSD,n=5)为0.9%~19.6%;方法检出限(LOD)在0.02~0.60μg/kg范围内;定量限(LOQ)在0.06~2.00μg/kg范围内。  相似文献   

14.
Size exclusion chromatography (SEC) was used as a cleanup method for the analysis of organophosphorus pesticides in household and vehicle dusts. The pesticides investigated were diazinon, methyl parathion, chlorpyrifos, malathion, phosmet, and azinphosmethyl. These compounds are of interest due to their use in agricultural tree fruit production and/or urban pest control. Pesticides were determined via gas chromatography/mass spectrometry with selected-ion monitoring and cool on-column injection. The lower limit of method validation was 0.20 microg/g. Method limits of detection in dust ranged from 0.012-0.055 microg/g. Dust samples were collected with vacuums from the homes and vehicles of people living and working in a rural agricultural region in the central part of Washington State. The analytes were extracted from the dust by sonication in acetone. The extracts were solvent-exchanged to cyclohexane, frozen, thawed, and centrifuged prior to SEC injection. Following SEC, the eluent was split into 2 fractions, concentrated, and injected on-column into the gas chromatograph. This method represents the first complete publication describing the SEC cleanup of organophosphorus pesticides in dusts. Recoveries of pesticides in dusts ranged from 63.5-110.8 +/- 4.9-19.6% over a fortification range of 0.20-10.00 microg/g. This optimized, automated, and reproducible SEC method does not require further treatment or cleanup for trace determination of these organophosphorus pesticides.  相似文献   

15.
A fast, reliable method for the determination of more than twenty chlorinated fungicides and insecticides in a variety of fruit samples is presented. The pesticides are extracted from chopped samples with magnetic stirring, after adding 13 ml of acetone-phosphate buffer-brine solution (12:1, v/v) with 5 ml of n-hexane. The continuous module employed allows sequential decolourization of the organic phase, solvent changeover and solid-phase extraction for clean-up and preconcentration purposes. A 1-microl aliquot of the pesticides in ethyl acetate (eluent) is finally injected into the gas chromatograph for separation and identification. The method provides excellent clean-up despite the complexity of the matrices involved. Fruit samples (5-20 g) containing 0.1-1250 ng/g pesticides were analysed with a high precision (4-6%). After contamination of the fruit samples for 12 h, average recoveries >90% at fortification levels of 5-25 ng/g were obtained for most of the pesticides. Positive findings of these pesticides in fruits purchased at local markets were confirmed by GC-MS.  相似文献   

16.
A liquid chromatography (LC)/fluorescence procedure was validated for emamectin (EM B1a) and desmethylamino-emamectin (DMAEM B1a) residues in lobster tissue. They were extracted by shaking and sonicating with 1% ammonium acetate-methanol in the presence of sand. The extract was concentrated, partitioned with ethyl acetate, and cleaned up on a propylsulfonic cation exchange cartridge. The analytes were eluted from the cartridge with 5% ammonium hydroxide-methyl acetate, the eluate was concentrated, and the solvent was changed to dry 20% ethyl acetate-acetonitrile before derivatization with trifluoroacetic anhydride-N-methylimidizole. The products were analyzed by LC-fluorescence, and no interference [>limit of detection (LOD)] was detected in the control samples. Lobster tissues fortified with EM B1a and DMAEM B1a at 0.5, 5, 10, 25, and 50 ng/g gave overall mean recoveries of 96.7 +/- 12.4%, relative standard deviation (RSD) = 12.8% for EM B1 and 83.6 +/- 12.1%, RSD = 14.5% for DMAEM B1a. Regression analysis of the calibration data gave slopes of 0.90 (EM B1a) and 0.71 (DMAEM B1a) with an r2 = 0.99 for both compounds. The calculated LOD and limit of quantification (LOQ) for EM B1a were 1.10 and 3.32 ng/g, respectively, and for DMAEM B1a were 0.762 and 2.31 ng/g, respectively. Residues of EM B1a and DMAEM B1a in fortified lobster tissues stored at -20 degrees C showed that residues were stable for 10-12 months. No loss of EM B1a and DMAEM B1a residues was observed after 3 freeze/thaw cycles of fortified tissue in a 5-day period.  相似文献   

17.
A collaborative study was conducted to determine multiple pesticide residues in fruits and vegetables using a quick, simple, inexpensive, and effective sample preparation method followed by concurrent analysis with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/ tandem mass spectrometry (LC/MS/MS). For short, the method is known as QuEChERS, which stands for quick, easy, cheap, effective, rugged, and safe. Twenty representative pesticides were fortified in 3 matrixes (grapes, lettuces, and oranges) at 3 duplicate levels unknown to the collaborators ranging from 10 to 1000 ng/g. Additionally, 8 incurred pesticide residues were determined. Thirteen laboratories from 7 countries provided results in the study, and a variety of different instruments were used by collaborators. The QuEChERS procedure simply entails 3 main steps: (1) a 15 g homogenized sample is weighed into a 50 mL centrifuge tube to which 15 mL acetonitrile containing 1% HOAc is added along with 6 g MgSO4 and 1.5 g NaOAc, and the tube is shaken and centrifuged; (2) a portion of the extract is mixed with 3 + 1 (w/w) MgSO4-primary secondary amine sorbent (200 mg/mL extract) and centrifuged; and (3) the final extract is analyzed by GC/MS and LC/MS/MS. To detect residues <10 ng/g in GC/MS, large-volume injection of 8 microL is typically needed, or the extract can be concentrated to 4 g/mL in toluene, in which case 2 microL splitless injection is used. In the study, the averaged results for data from 7-13 laboratories (not using internal standardization) for the 18 blind duplicates at the 9 spiking levels in the 3 matrixes are as follows [%recovery and reproducibility relative standard deviation (RSD(R), %)]: atrazine, 92 (18); azoxystrobin, 93 (15); bifenthrin, 90 (16); carbaryl, 96 (20); chlorothalonil, 70 (34); chlorpyrifos, 89 (25); cyprodinil, 89 (19); o,p'-DDD, 89 (18); dichlorvos, 82 (21); endosulfan sulfate, 80 (27); imazalil, 77 (33); imidacloprid, 96 (16); linuron, 89 (19); methamidophos, 87 (17); methomyl, 96 (17); procymidone, 91 (20); pymetrozine, 69 (19); tebuconazole, 89 (15); tolylfluanid (in grapes and oranges), 68 (33); and trifluralin, 85 (20). For incurred pesticides, kresoxim-methyl (9.2 +/- 3.2 ng/g) and cyprodinil (112 +/- 18) were found in the grapes; permethrins (112 +/- 41), lamda-cyhalothrin (58 +/- 11), and imidacloprid (12 +/- 2) were determined in the lettuces; and ethion (198 +/- 36), thiabendazole (53 +/- 8), and imazalil (13 +/- 4) were determined in the oranges. Chlorpyrifosmethyl (200 ng/g) was used as a quality control standard added during sample homogenization and yielded 86% recovery and 19% RSD(R). Intralaboratory repeatabilities for the method averaged 9.8% RSD for all analytes. The results demonstrate that the method is fit-for-purpose to monitor many pesticide residues in fruits and vegetables, and the Study Director recommends that it be adopted Official First Action.  相似文献   

18.
A method was developed and validated for determination and quantitation of tilmicosin residues in swine, cattle, and sheep edible tissues, as well as chicken fat, skin, and muscle over a concentration range of 0.025 microg/g-20 microg/g. For chicken kidney and liver, the method was validated over a range of 0.060 microg/g-20 microg/g. The tissue sample was extracted with methanol and a C18 cartridge was used for solid-phase extraction cleanup. A reversed-phase gradient liquid chromatographic method with detection at 280 nm was used to separate the tilmicosin from matrix components in 30 min run time. The limit of quantitation (LOQ) of the method was 0.025 microg/g for all tested tissues except chicken kidney and liver, for which the LOQ was 0.06 microg/g. Average recoveries for tissue samples ranged from 73 to 98%. Relative standard deviation values ranged from 0.6 to 14.7%.  相似文献   

19.
A method is described for the determination of 251 pesticide and degradation product residues in fruit and vegetable samples. Extraction of the sample with acetonitrile is followed by a salting-out step. Co-extractives are removed by passing a portion of the acetonitrile extract through an octadecyl (C18) solid-phase extraction cleanup cartridge and then, in a second cleanup, through a carbon cartridge coupled to an amino propyl cartridge. Determination is by gas chromatography with mass-selective detection in the selected-ion monitoring mode, and by liquid chromatography with post-column reaction and fluorescence detection for N-methyl carbamates. The method has been used for analysis of various fruits and vegetables, such as apple, banana, cabbage, carrot, cucumber, lettuce, orange, pear, pepper, and pineapple. Limits of detection range between 0.02 and 1.0 mg/kg for most compounds. Over 80% of the compounds have a limit of detection of < or = 0.04 mg/kg.  相似文献   

20.
An analytical method is reported for residue analysis of the fungicide meptyldinocap in different fruit matrixes that involves extraction with ethyl acetate, hydrolysis of the residues with ethanolamine, and determination by LC/MS/MS. The method involves extraction of 10 g sample with 10 mL ethyl acetate; evaporation of the ethyl acetate phase to dryness, and subsequent hydrolysis of the residues to 4,6-dinitro-2-(1-methylheptyl) phenol on reaction with 1% ethanolamine. The pH of this hydrolyzed product was neutralized with formic acid and analyzed by LC/MS/MS. The hydrolysis reaction followed pseudo-first-order kinetics, and the reaction product was spectroscopically confirmed as 2-(1-methylheptyl)-4,6-dinitrophenol. The method offered > 80% recoveries at an LOQ of 10 ng/g for grape and mango, 25 ng/g for pomegranate with intralaboratory Horwitz ratio < 0.5, and measurement uncertainties < 10% at LOQ levels. Considering first-order rate kinetics, activation energy, enthalpy of activation, and entropy of activation varied as solvent > mango > grape > pomegranate. Free energy of activation at 298 K was higher than at 280 K and was similar for solvent and three matrixes at both temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号