首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex [Pd(2-Phpy)(μ-Cl)]2 reacts with pyridines (L=pyridine, α-picoline and γ-picoline), amines (L=isopropylamine, tert-butylamine) and ammonia to form the corresponding ortho-palladatedderivatives [Pd(2-Phpy)ClL]. The compounds have been characterized by C, H and Nanalyses and spectroscopic methods (IR and 1H and 13C NMR).TG, DTG and DSC studies of the complexes were carried out in dynamic nitrogen atmosphere. From DSC analyses the heats of decomposition were calculated. The kinetics ofthe first step of thermal decomposition were evaluated from TG data by isothermal methods for L=pyridine and isopropylamine. The activation energies obtained are in the range 90–100 kJ mol-1. The best fitting for data was observed for R2 and A1.5 kinetic models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The Lewis acidic pincer with a labile triflate ligand, viz. [Pd(OTf)(PCP)] (PCP = (-)CH(CH(2)CH(2)PPh(2))(2)) was prepared from [PdCl(PCP)] with AgOTf. It reacts readily with neutral bidentate ligands [L = 4,4'-bipyridine (4,4'-bpy) and 1,1'-bis(diphenylphosphino)ferrocene (dppf)] to give dinuclear PCP pincers [{Pd(PCP)}(2)(micro-L)][OTf](2) (L = 4,4'-bpy, 2; dppf,3). [PdCl(PCP)] also reacts with 4-mercaptopyridine in the presence of KOH to give a Lewis basic pincer with a free pyridine functional group [Pd(4-Spy)(PCP)]4. Its metalloligand character is exemplified by the isolation of an asymmetric dinuclear double-pincer complex [{Pd(PCP)}(2)(micro-4-Spy)][PF(6)] 6 bridged by an ambidentate pyridinethiolato ligand. Complexes 1, 2, 3, 4 and 6 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

3.
The three-coordinate tris(2-pyridylphosphine)palladium(0) complex is the first example of a group 10 metal complex bearing pyridine substituted phosphine ligand, whose crystal structure is determined. Pd(PPh2py)3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 12.874(4) Å, b = 14.162(3) Å, c = 14.912(3) Å, α = 87.76(2)°, β = 66.50(2)°, γ = 63.17(2)°, Z = 2, and V = 2191(1) Å3. Full-matrix least-squares refinement of 523 variables using 4911 data (F2o > 3σF2o) gave R = 0.033 and Rw = 0.033. The pyridine ring is disordered. Possible weak interactions among Ph rings or Py rings and Pd center are discussed. Close approach of the ortho hydrogen on phenyl rings to the Pd center may imply facile ortho metallation.  相似文献   

4.
(+)-樟脑与6-甲基-2-氨甲基吡啶缩合得到一种新的手性双齿配体-1,7,7-三甲基-双环[2.2.1]-2-(6'-甲基-2'-氨甲基)吡啶亚胺(1), 与二价钯生成配合物2, 晶体属P21空间群, 晶胞参数为a=10.641(2), b=10.706(2), c=11.011(2)埃; β=115.63(1)°;V=1131.15(40)埃^3; Z=2, 二价钴与1生成配合物3, 晶体属PI空间群, 晶胞参数为a=7.429(2), b=7.971(3), c=16.304(5)埃; a=80.19(3), β=77.10(2), γ=83.21(2)°; V=924.25(56)埃^3; Z=2。根据晶体数据讨论了分子的结构特征, 并对配合物的红外、紫外和核磁共振谱的变化作了解释。  相似文献   

5.
M(2)L(2) type metallacyclic complexes, [Pd(2)(L1)(2)Cl(4)]·1.5CH(2)Cl(2) (1), [Pd(2)(L1)(2)Cl(4)]·2CHCl(3) (2), [Pd(2)(L2)(2)Cl(4)]·2CH(2)Cl(2)·2CH(3)CN (3), [Pd(2)(L2)(2)Cl(4)]·2CHCl(3)·2CH(3)CN (4) and [Pd(2)(L3)(2)Cl(4)]·CH(2)Cl(2)·2CH(3)CN (5), have been prepared from three semi-rigid benzimidazol or benzotriazol ligands, 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene (L1), 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene (L2) and 1,4-bis(benzotriazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene (L3). All the complexes were structurally characterized by single-crystal X-ray diffraction and the phase purity was confirmed by powder X-ray diffraction (PXRD) measurements. The solution structure of representative complex 1 was studied by (1)H NMR titration and ESI mass spectroscopy. The thermal stability and guest-exchange properties of 1, 3 and 4 were investigated, revealing that the Pd(2)L(2) metallacycles can act as a selective receptor for CH(2)Cl(2) or CHCl(3) guest molecules. The catalytic activity of 1 in Suzuki-Miyaura coupling reaction was also studied and 1 could be recycled at least 5 times under heterogeneous conditions, indicative of a potential self-supported catalyst.  相似文献   

6.
The complexes [Pd(Me2PO2)2]3 and Pd(Me2AsO2)2 were prepared from the corresponding acids and palladium(II) acetate. Their structures were deduced by IR and NMR spectroscopy. Addition of pyridine and 2,2′‐bipyridine to [Pd(Me2PO2)2]3 gave the adducts Pd(Me2PO2)2py2 and Pd(Me2PO2)2bipy, which were characterized by 1H NMR spectroscopy. Addition of nicotinic acid and nicotinamide in water gave the adducts Pd(Me2PO2)2L2, whereas in methanol the adducts Pd(Me2PO2)2L were obtained. The cacodylate containing complex formed the adducts Pd(Me2AsO2)2py and Pd(Me2AsO2)2bipy1/2, which are unstable in CDCl3. Triphenylphosphine deoxygenated both Pd(Me2MO2)2 complexes, but the palladium(II) containing products could not be isolated. The expected Pd(Me2P–O)2 reacted further and gave many products, whereas the anticipated Pd(Me2As–O)2 did not bind triphenylphosphine.  相似文献   

7.
We report that oxidative addition of bromobenzene to Pd(PtBu3)2 occurs by an unusual autocatalytic mechanism. Studies on the effect of various additives showed that the degree of rate acceleration followed the trend: (PtBu3)Pd(Ph)(Br) approximately (HPtBu3)Br < [(PtBu3)Pd(mu-Br)]2 < (PtBu3)2Pd(H)(Br). Studies on the reactions of Pd(PtBu3)2 in the presence of (PtBu3)2Pd(H)(Br) showed that the concentration of (PtBu3)2Pd(H)(Br) decreased only after the Pd(0) complex had been consumed. These data indicated that the catalyst in this process is (PtBu3)2Pd(H)(Br). Thermal decomposition of the three-coordinate oxidative addition product (PtBu3)Pd(Ar)(Br) during the reaction of Pd(PtBu3)2 and bromoarenes ultimately leads to formation of (PtBu3)2Pd(H)(Br). Parallel reactions of bromobenzene with (PtBu3)2Pd(H)(Br) and Pd(PtBu3)2 showed that the bromoarenes reacted considerably faster with the Pd(II) species than with the Pd(0) species. We therefore propose a catalytic cycle for oxidative addition in which PBut3.HBr reacts with the Pd(0) species to form (PtBu3)2Pd(H)(Br), and (PtBu3)2Pd(H)(Br) reacts with the bromoarene, possibly though the anionic species [HPtBu3+][(PtBu3)Pd(Br)-], to form [Pd(PtBu3)(Ar)(Br)].  相似文献   

8.
The thermodynamics of pyridine coordination in 1,4-phenylene-bridged binuclear palladium and platinum organometallic complexes [1,4-(MOTf)2-&{C6(CH2NR2)4-2,3,5,6}] (11, M =Pd, Pt; R =CH3, C2H5, R2 = -(CH2)5-) are measured by 1H NMR in DMSO-d6. The coordination of substituted pyridines by bimetallic complexes 11 or 12 in DMSO is found to proceed via two effectively independent metalligand binding events, and the association constants for pyridine coordination and rate constants for pyridine exchange are nearly identical to those measured previously on monometallic analogs. A linear free energy relationship between the association constant for pyridine coordination and the inductive Hammett constant of the pyridine substituent is observed, and the sensitivity (rho = -1.7 to -2.1) in DMSO depends only slightly on metal (Pd vs Pt) and spectator ligand (pincer dialkylamine vs triarylphosphine). The association constant for a particular pyridine ligand, however, varies by roughly 3 orders of magnitude across the series of metal complexes. The effective independence of the two coordination sites and the range of available thermodynamic and kinetic behaviors of the coordination guide the use of these versatile building blocks in metallosupramolecular applications.  相似文献   

9.
Complexes of the type [Pd(ligand)(2)](anion)(2) were prepared with a series of bidentate di(o-methoxyphenyl)phosphine ligands with increasing steric bulk on the meta position of the phenyl groups: m-H (L1); m-MeO (L2); and m-Me (L3). The solid-state structure of [Pd(L2)(2)](OTs)(2) revealed that the two ligands are symmetrically coordinated to Pd(2+). In the solid state structure of [Pd(L3)(2)](OTs)(2) however, the two ligands are unsymmetrically coordinated to Pd(2+), yielding an unprecedented conformation of this bis-chelate P(4)Pd(2+) complex. (1)H-(1)H-COSY and NOESY analysis and a (31)P-NMR simulation showed that the asymmetric structure of [Pd(L3)(2)](OTs)(2) is retained in solution.  相似文献   

10.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

11.
The conjugated homobimetallic palladium(II) complex [(L1)Pd(qd)Pd(L1)] (qd = quinonediimine) was obtained in a one-pot reaction by the in-situ oxidative complexation of 1,4-phenylenediamine with the palladium(II) complex [(L1)Pd(MeCN)] (H2L1 = N,N'-bis(2-phenylethyl)-2,6-pyridinedicarboxamide) while in the absence of an additional ligand [(L1)Pd(MeCN)] was converted to the amide-bridged macrocyclic tetramer [Pd(L1)]4.  相似文献   

12.
The interaction of O(2) with small Pd particles (2-10 nm) supported on an alpha-Al(2)O(3)(0001) single crystal under both ultrahigh vacuum (UHV) and high-pressure conditions has been studied by temperature-programmed desorption (TPD), temperature-programmed low-energy ion scattering (TP-LEIS), and X-ray photoelectron spectroscopy (XPS). A low O(2) exposure (30 L) at 500 K leads to surface oxygen adatoms on the Pd nanoparticles, which desorb in TPD as O(2) in a peak at approximately 880 K. Surface O adatoms on the smallest Pd particles move to subsurface sites starting at 400 K, and they almost all move subsurface by approximately 750 K, desorbing mainly at considerably higher temperature. The dominant oxygen species above 700 K is subsurface, implying that it is more stable than oxygen adatoms on Pd. Exposures of the Pd nanoparticles to 25 Torr O(2) at 373-473 K readily convert the Pd to a species whose Pd XPS peak shifts by the same amount as the binding energy difference between bulk Pd and bulk PdO. We attribute this to PdO nanoparticles (or a thin film of PdO on or under the Pd for the larger particles). The decomposition of the PdO on these nanoparticles to Pd in an equilibrium O(2) pressure of 10-7 Torr does not occur until approximately 750 K, or approximately 200 K higher than the equilibrium decomposition of bulk PdO. This is attributed to the higher energy of Pd nanoparticles compared to bulk Pd and, for the larger particles, to the adhesion energy of the PdO film to the Pd, both of which stabilize the PdO on these Pd nanoparticles relative to bulk PdO. This PdO-like film on the larger particles may be similar to the ordered oxide thin film previously reported to form on Pd(111) but may also reside at the alpha-Al(2)O(3) interface and be partially stabilized by adhesion to this interface.  相似文献   

13.
The sterically crowded isoindoline pincer ligand, 6'-MeLH, prepared by condensation of 4-methyl-2-aminopyridine and phthalonitrile, exhibits very different reaction chemistry with Cd2+, Zn2+, and Pd2+. Three different ligand coordination modes are reported, each dependent upon choice of metal ion. This isoindoline binds to Cd2+ as a charge-neutral, zwitterionic, bidentate ligand using imine and pyridine nitrogen atoms to form the eight-coordinate fluxional complex, Cd(6'-MeLH)2(NO3)2. In the presence of Zn2+, however, loss of a pyridine arm occurs through solvolysis and tetrahedrally coordinated complexes are formed with coordination of pyrrole and pyridine nitrogen atoms. Reaction with Pd2+ produces the highly distorted, square planar complex Pd(6'-MeL)Cl in which a deprotonated isoindoline anion coordinates as a tridentate pyridinium NNC pincer ligand.  相似文献   

14.
The absorption and emission spectra, emission lifetimes, luminescence quantum yields, and electrochemical behavior of the complexes Pd(Phpy)2, Pd(Thpy)2, and Pd(bhq)2 (Phpy?, Thpy?, and bhq?, and bhq? are the deprotonated forms of 2-phenylpyridine, 2-(2-thienyl)pyridine, and benzo[h] quinoline, respectively) have been studied, and the results obtained have been compared with those available for Pt(II) and Pt(IV) complexes containing the same ligands. The intense ligand-centered absorption bands below 340 nm are strongly perturbed by matalation, and the absorption features in the 340–450-nm region are likely to include contributions from formally metal-to-ligand charge-transfer transitions. The structured luminescence spectra observed at 77 K (lifetimes are 0.48, 0.28 and 2.6 ms for Pd(Phpy)2, Pd(Thpy)2, and Pd(bhq)2, respectively) have been assigned to transitions having mainly ligand-centered character, with an increasing metal-to-ligand charge-transfer contribution in going from Pd(bhq)2 to Pd(Phpy)2 and to Pd(Thpy)2. The complexes Pd(phpy)2 and Pd(thpy)2 show two reversible one-electron reduction waves, whereas reduction of Pd(bhq)2 is irreversible, as is the oxidation of the three complexes.  相似文献   

15.
Reactions of the binuclear complexes M2L2Cl2 [M = Pt or Pd, L = bis(diphenylphosphino)methane (dppm) or 2-(diphenylphosphino)pyridine (dppy)] with thallium 3,6-ditert-butyl-o-benzosemiquinone (3,6-SQ) in solutions have been studied. The formation of the corresponding bis(semiquinone) binuclear derivatives M2L2(SQ)2 with retention of the metal-metal bond has been established by the ESR method. The average distances between the centers of localization of unpaired electrons, which were determined from the ESR spectral data for the complexes studied, allow conclusions about the parallel arrangement of the semiquinone ligands in skewed conformations in a square-pyramidal coordination sphere of both metal atoms. At room temperature, the biradical complexes are slowly converted to diamagnetic catecholate compounds with cleavage of the M-M bond and with retention of the bridging structure of the dppm and dppy ligands. The structures of catecholate complexes of palladium have been established by X-ray structural analysis.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 464–468, February, 1996.  相似文献   

16.
Potassium tetrachloropalladate(II) can be arylated in tetrahydrofuran/dioxane to give the solvated potassium salts K2[Pd(C6F5)4·2S (S = benzonitrile, acetonitrile, pyridine or aniline), from which the solvent can be removed by heating. With malononitrile (MN) the compound K2[Pd(C6F5)4]·4MN is formed, which upon heating is converted into K2[Pd(C6F5)4]·(MN-trimer). In dry benzene, potassium tetrakis(pentafluorophenyl)palladate(II) acts as an efficient catalyst for the cyclotrimerization of malonitrile, yielding 4,6-diamino-3,5-dicyano-2-cyanomethylpyridine. Structural data for all the compounds are reported.  相似文献   

17.
It is shown that dithiooxamide immobilized on SiO2 can bind Pd(II) and Pt(II) from aqueous chloride solutions by complexing. Values have been derived for the effective Pd(II) and Pt(II) sorption constants for dithiooxamide immobilized on SiO2, which represent stronger binding of Pd(II) than Pt(II). L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospekt Nauki, Kiev 252039, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 34, No. 6, pp. 366–370, November–December, 1998.  相似文献   

18.
A Pd(II)-catalyzed activation and arylation of C(sp2)–H bond directed by pyridine N-oxide in water is achieved with high regioselectivity to form monoarylated products in yields up to 91%. The wide substrate scope highlights the flexibility of the catalyst. The reaction mechanism was proposed and the application of this method was taken as an example by the synthesis of COX-2 inhibitor analog.  相似文献   

19.
In the presence of large amounts of [Me4N]Cl, the reaction of ortho-chloromercurated 2-[(eta6-phenyl)tricarbonylchromium]pyridine with mu-chloro cyclopalladated aromatic compounds yields a series of new heteroleptic heterodinuclear cis-(C--N)2Pd(II) complexes, which are valuable precursors of planar chiral cyclopalladated (eta6-arene)Cr(CO)3 complexes.  相似文献   

20.
Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)(2)/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that consists of (1) steady-state formation of a Pd(II)-amidate-alkene chelate with release of 1 equiv of pyridine and AcOH from the catalyst center, (2) alkene insertion into a Pd-N bond, (3) reversible β-hydride elimination, (4) irreversible reductive elimination of AcOH, and (5) aerobic oxidation of palladium(0) to regenerate the active trans-Pd(OAc)(2)(py)(2) catalyst. Evidence is obtained for two energetically viable pathways for the key C-N bond-forming step, featuring a pyridine-ligated and a pyridine-dissociated Pd(II) species. Analysis of natural charges and bond lengths of the alkene-insertion transition state suggest that this reaction is best described as an intramolecular nucleophilic attack of the amidate ligand on the coordinated alkene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号