首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An Fe(II) carbonyl complex [(PaPy3)Fe(CO)](ClO4) (1) of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H, H is the dissociable amide proton) has been synthesized and structurally characterized. This Fe(II) carbonyl exhibits its nu(CO) at 1972 cm(-1), and its 1H NMR spectrum in degassed CD3CN confirms its S = 0 ground state. The bound CO in 1 is not photolabile. Reaction of 1 with an equimolar amount of NO results in the formation of the {Fe-NO}7 nitrosyl [(PaPy3)Fe(NO)](ClO4) (2), while excess NO affords the iron(III) nitro complex [(PaPy3)Fe(NO2)](ClO4) (5). In the presence of [Fe(Cp)2]+ and excess NO, 1 forms the {Fe-NO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (3). Complex 1 also reacts with dioxygen to afford the iron(III) mu-oxo species [{(PaPy3)Fe}2O](ClO4)2 (4). Comparison of the metric and spectral parameters of 1 with those of the previously reported {Fe-NO}6,7 nitrosyls 3 and 2 provides insight into the electronic distributions in the Fe(II)-CO, Fe(II)-NO, and Fe(II)-NO+ bonds in the isostructural series of complexes 1-3 derived from a non-heme polypyridine ligand with one carboxamide group.  相似文献   

2.
Three iron complexes of a pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H, H is the dissociable amide proton) have been synthesized. All three species, namely, two nitrosyls [(PaPy(3))Fe(NO)](ClO(4))(2) (2) and [(PaPy(3))Fe(NO)](ClO(4)) (3) and one nitro complex [(PaPy(3))Fe(NO(2))](ClO(4)) (4), have been structurally characterized. These complexes provide the opportunity to compare the structural and spectral properties of a set of isostructural [Fe-NO](6,7) complexes (2 and 3, respectively) and an analogous genuine Fe(III) complex with an "innocent" sixth ligand ([(PaPy(3))Fe(NO(2))](ClO(4)), 4). The most striking difference in the structural features of 2 and 3 is the Fe-N-O angle (Fe-N-O = 173.1(2) degrees in the case of 2 and 141.29(15) degrees in the case of 3). The clean (1)H NMR spectrum of 2 in CD(3)CN reveals its S = 0 ground state and confirms its [Fe-NO](6) configuration. The binding of NO at the non-heme iron center in 2 is completely reversible and the bound NO is photolabile. M?ssbauer data, electron paramagnetic resonance signal at g approximately 2.00, and variable temperature magnetic susceptibility measurements indicate the S = (1)/(2) spin state of the [Fe-NO](7) complex 3. Analysis of the spectroscopic data suggests Fe(II)-NO(+) and Fe(II)-NO(*) formulations for 2 and 3, respectively. The bound NO in 3 does not show any photolability. However, in MeCN solution, it reacts rapidly with dioxygen to afford the nitro complex 4, which has also been synthesized independently from [(PaPy(3))Fe(MeCN)](2+) and NO(2)(-). Nucleophilic attack of hydroxide ion to the N atom of the NO ligand in 2 in MeCN in the dark gives rise to 4 in high yield.  相似文献   

3.
The iron complexes of a designed pentadentate Schiff base ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-aldimine (SBPy(3)) have been synthesized. The low-spin mononuclear Fe(III) complex [(SBPy(3))Fe(DMF)](ClO(4))(3) (2), though stable in the solid state, is spontaneously reduced to the corresponding Fe(II) species [(SBPy(3))Fe(MeCN)](2+) in MeCN. Fe(II) complex [(SBPy(3))Fe(MeCN)](BF(4))(2) (3) has been isolated independently and characterized by crystallography. Electrochemical studies indicate that SBPy(3), like other pentadentate polypyridine ligands, stabilizes the Fe(II) center to a great extent (E(1/2) = 1.01 V vs SCE in MeCN). This fact is responsible for the ready reduction of 2. It is evident that such reactivity has brought complications in the syntheses of iron complexes of polypyridine ligands reported in previous accounts. Very low solubility of 2 in MeOH has allowed isolation of analytically pure 2 in the present work. Storage of dilute methanolic solution of 2 results in the formation of the mu-oxo Fe(III) dimer [(SBPy(3))FeOFe(SBPy(3))](ClO(4))(4) (5), the structure of which has also been determined. Fe(II) complex 3 reacts with CN(-) to afford cyanide adduct [(SBPy(3))Fe(CN)](BF(4)) (4) but does not exhibit any reactivity toward NO. The azomethine moiety (CH=N-py) of 2 is rapidly oxidized by H(2)O(2) to a pyridine-2-carboxamido (C(=O)-N-py) unit and affords [(PaPy(3))Fe(MeCN)](ClO(4))(2) (1), a complex previously reported by us.  相似文献   

4.
The iron nitrosyl [(PaPy2Q)Fe(NO)](ClO4)2 (2), derived from the quinoline-based ligand PaPy2QH (N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide, where H is dissociable proton) has been characterized by spectroscopy and X-ray diffraction techniques. The 1H NMR spectrum (S = 0 ground state) and v(NO) value of 1885 cm(-1) indicate that 2 is a [Fe-NO]6 nitrosyl. Although 2 is stable in the dark, exposure of an acetonitrile solution of 2 (lambdamax = 510 nm) to light in the visible range causes rapid release of NO and formation of the solvato species [(PaPy2Q)Fe(MeCN)](ClO4)2 (6). Quantum yield (Phi) measurements indicate that 2 is a more efficient NO donor (Phi = 0.258) than [(PaPy3)Fe(NO)](ClO4)2 (1, Phi = 0.185), a complex derived from a similar but pyridine-based ligand. Interestingly, when the photoproduct 6 is exposed to water or a small amount of base, the triply bridged diiron(III) species [(PaPy2Q)FeOFe(PaPy2Q)](ClO4)2 (3) forms in good yield. This species can be independently synthesized from aerobic oxidation of the Fe(II) species [(PaPy2Q)Fe(MeCN)](ClO4) in acetonitrile. The structure of 3 reveals a unique Fe(III)-O-Fe(III) link supported by two (eta2,mu2)mu-NCO bridges derived from the carboxamido groups of the two (PaPy2Q)Fe(III) moieties.  相似文献   

5.
A new pentacoordinate ligand based on TPA (tris-(2-pyridylmethyl)amine), namely, N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H), has been synthesized. The iron(III) complexes of this ligand, namely, [Fe(PaPy(3))(CH(3)CN)](ClO(4))(2) (1), [Fe(PaPy(3))(Cl)]ClO(4) (2), [Fe(PaPy(3))(CN)]ClO(4) (3), and [Fe(PaPy(3))(N(3))]ClO(4) (4), have been isolated and complexes 1-3 have been structurally characterized. These complexes are the first examples of monomeric iron(III) complexes with one carboxamido nitrogen in the first coordination sphere. All four complexes are low spin and exhibit rhombic EPR signals around g = 2. The solvent bound species [Fe(PaPy(3))(CH(3)CN)](ClO(4))(2) reacts with H(2)O(2) in acetonitrile at low temperature to afford [Fe(PaPy(3))(OOH)](+) (g = 2.24, 2.14, 1.96). When cyclohexene is allowed to react with 1/H(2)O(2) at room temperature, a significant amount of cyclohexene oxide is produced along with the allylic oxidation products. Analysis of the oxidation products indicates that the allylic oxidation products arise from a radical-driven autoxidation process while the epoxidation is carried out by a distinctly different oxidant. No epoxidation of cyclohexene is observed with 1/TBHP.  相似文献   

6.
Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.  相似文献   

7.
Using a mixed nitrogen/sulfur ligand possessing a single internal hydrogen bond donor (N,N-bis-2-(methylthio)ethyl-N-(6-amino-2-pyridylmethyl)amine (bmapa)), we prepared and structurally and spectroscopically characterized a series of zinc complexes possessing a single alcohol ([(bmapa)Zn(MeOH)](ClO(4))(2) (1)), formamide ([(bmapa)Zn(DMF)](ClO(4))(2) (3), [(bmapa)Zn(NMF)](ClO(4))(2) (4)), or sulfoxide ([(bmapa)Zn(DMSO)](ClO(4))(2) (7), [(bmapa)Zn(TMSO)](ClO(4))(2) (8)) ligand. X-ray crystallographic characterization was obtained for 1.MeOH, 3, 4, 7.DMSO, and 8. To enable studies of the influence of the single hydrogen bond donor amino group of the bmapa ligand on the chemistry of zinc/neutral oxygen donor binding interactions, analogous alcohol ([(bmpa)Zn(MeOH)](ClO(4))(2) (2)), formamide ([(bmpa)Zn(DMF)](ClO(4))(2) (5), [(bmpa)Zn(NMF)](ClO(4))(2) (6)), and sulfoxide ([(bmpa)Zn(DMSO)](ClO(4))(2) (9), [(bmpa)Zn(TMSO)](ClO(4))(2) (10)) complexes of the bmpa (N,N-bis-2-(methylthio)ethyl-N-(2-pyridylmethyl)amine) ligand system were generated and characterized. Of these, 2, 5, 6, and 9.2DMSO were characterized by X-ray crystallography. Solution spectroscopic methods ((1)H and (13)C NMR, FTIR) were utilized to examine the formamide binding properties of 3-6 in CH(3)CN and CH(3)NO(2) solutions. Conclusions derived from this work include the following: (1) the increased donicity of formamide and sulfoxide donors (versus alcohols) makes these competitive ligands for a cationic N/S-ligated zinc center, even in alcohol solution, (2) the inclusion of a single internal hydrogen bond donor, characterized by a heteroatom distance of approximately 2.80-2.95 A, produces subtle structural perturbations in N/S-ligated zinc alcohol, formamide, or sulfoxide complexes, (3) the heteroatom distance of a secondary hydrogen-bonding interaction involving the oxygen atom of a zinc-coordinated alcohol, formamide, and sulfoxide ligand is reduced with increasing donicity of the exogenous ligand, and (4) formamide displacement on a N/S-ligated zinc center is rapid, regardless of the presence of an internal hydrogen bond donor. These results provide initial insight into the chemical factors governing the binding of a neutral oxygen donor to a N/S-ligated zinc center.  相似文献   

8.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

9.
Many nonheme iron-dependent enzymes activate dioxygen to catalyze hydroxylations of arene substrates. Key features of this chemistry have been developed from complexes of a family of tetradentate tripodal ligands obtained by modification of tris(2-pyridylmethyl)amine (TPA) with single alpha-arene substituents. These included the following: -C(6)H(5) (i.e., 6-PhTPA), L(1); -o-C(6)H(4)D, o-d(1)-L(1); -C(6)D(5), d(5)-L(1); -m-C(6)H(4)NO(2), L(2); -m-C(6)H(4)CF(3), L(3); -m-C(6)H(4)Cl, L(4); -m-C(6)H(4)CH(3), L(5); -m-C(6)H(4)OCH(3), L(6); -p-C(6)H(4)OCH(3), L(7). Additionally, the corresponding ligand with one alpha-phenyl and two alpha-methyl substituents (6,6-Me(2)-6-PhTPA, L(8)) was also synthesized. Complexes of the formulas [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(n)())Fe(II)(OTf)(2)] (n = 1-7, OTf = (-)O(3)SCF(3)), and [(L(8))Fe(II)(OTf)(2)](2) were obtained and characterized by (1)H NMR and UV-visible spectroscopies and by X-ray diffraction in the cases of [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(6))Fe(II)(OTf)(2)], and [(L(8))Fe(II)(OTf)(2)](2). The complexes react with tert-butyl hydroperoxide ((t)()BuOOH) in CH(3)CN solutions to give iron(III) complexes of ortho-hydroxylated ligands. The product complex derived from L(1) was identified as the solvated monomeric complex [(L(1)O(-))Fe(III)](2+) in equilibrium with its oxo-bridged dimer [(L(1)O(-))(2)Fe(III)(2)(mu(2)-O)](2+), which was characterized by X-ray crystallography as the BPh(4)(-) salt. The L(8) product was also an oxo-bridged dimer, [(L(8)O(-))(2)Fe(III)(2)(mu(2)-O)](2+). Transient intermediates were observed at low temperature by UV-visible spectroscopy, and these were characterized as iron(III) alkylperoxo complexes by resonance Raman and EPR spectroscopies for L(1) and L(8). [(L(1))Fe(II)(OTf)(2)] gave rise to a mixture of high-spin (S = 5/2) and low-spin (S = 1/2) Fe(III)-OOR isomers in acetonitrile, whereas both [(L(1))Fe(OTf)(2)] in CH(2)Cl(2) and [(L(8))Fe(OTf)(2)](2) in acetonitrile afforded only high-spin intermediates. The L(1) and L(8) intermediates both decomposed to form respective phenolate complexes, but their reaction times differed by 3 orders of magnitude. In the case of L(1), (18)O isotope labeling indicated that the phenolate oxygen is derived from the terminal peroxide oxygen via a species that can undergo partial exchange with exogenous water. The iron(III) alkylperoxo intermediate is proposed to undergo homolytic O-O bond cleavage to yield an oxoiron(IV) species as an unobserved reactive intermediate in the hydroxylation of the pendant alpha-aryl substituents. The putative homolytic chemistry was confirmed by using 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a probe, and the products obtained in the presence and in the absence of air were consistent with formation of alkoxy radical (RO(*)). Moreover, when one ortho position was labeled with deuterium, no selectivity was observed between hydroxylation of the deuterated and normal isotopomeric ortho sites, but a significant 1,2-deuterium shift ("NIH shift") occurred. These results provide strong mechanistic evidence for a metal-centered electrophilic oxidant, presumably an oxoiron(IV) complex, in these arene hydroxylations and support participation of such a species in the mechanisms of the nonheme iron- and pterin-dependent aryl amino acid hydroxylases.  相似文献   

10.
A series of iron(III) complexes of the tetradentate ligand BPMEN (N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) were prepared and structurally characterized. Complex [Fe(2)(mu-O)(mu-OH)(BPMEN)(2)](ClO(4))(3) (1) contains a (mu-oxo)(mu-hydroxo)diiron(III) diamond core. Complex [Fe(BPMEN)(urea)(OEt)](ClO(4))(2) (2) is a rare example of a mononuclear non-heme iron(III) alkoxide complex. Complexes [Fe(2)(mu-O)(mu-OC(NH(2))NH)(BPMEN)(2)](ClO(4))(3) (3) and [Fe(2)(mu-O)(mu-OC(NHMe)NH)(BPMEN)(2)](ClO(4))(3) (4) feature N,O-bridging deprotonated urea ligands. The kinetics and equilibrium of the reactions of 1 with ligands L (L = water, urea, 1-methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, and acetamide) in acetonitrile solutions were studied by stopped-flow UV-vis spectrophotometry, NMR, and mass spectrometry. All these ligands react with 1 in a rapid equilibrium, opening the four-membered Fe(III)(mu-O)(mu-OH)Fe(III) core and forming intermediates with a (HO)Fe(III)(mu-O)Fe(III)(L) core. The entropy and enthalpy for urea binding through oxygen are DeltaH degrees = -25 kJ mol(-1) and DeltaS degrees = -53.4 J mol(-1) K(-1) with an equilibrium constant of K(1) = 37 L mol(-1) at 25 degrees C. Addition of methyl groups on one of the urea nitrogen did not affect this reaction, but the addition of methyl groups on both nitrogens considerably decreased the value of K(1). An opening of the hydroxo bridge in the diamond core complex [Fe(2)(mu-O)(mu-OH)(BPMEN)(2)] is a rapid associative process, with activation enthalpy of about 60 kJ mol(-1) and activation entropies ranging from -25 to -43 J mol(-1) K(-1). For the incoming ligands with the -CONH(2) functionality (urea, 1-methylurea, 1,1-dimethylurea, and acetamide), a second, slow step occurs, leading to the formation of stable N,O-coordinated amidate diiron(III) species such as 3 and 4. The rate of this ring-closure reaction is controlled by the steric bulk of the incoming ligand and by the acidity of the amide group.  相似文献   

11.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

12.
A recently reported binuclear zinc hydroxide complex [(L(1)Zn(2))(mu-OH)](ClO(4))(2) (, L(1) = 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenolate monoanion) containing a single bridging hydroxide was examined for thioester hydrolysis reactivity. Treatment of it with hydroxyphenylthioacetic acid S-methyl ester in dry CD(3)CN results in no reaction after approximately 65 h at 45(1) degrees C. Binuclear zinc hydroxide complexes of the N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine (L(2)) and N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)ethyl)amine (L(3)) chelate ligands were prepared by treatment of each ligand with molar equivalent amounts of Zn(ClO(4))(2).6H(2)O and KOH in methanol. These complexes, [(L(2)Zn)(2)(mu-OH)(2)](ClO(4))(2) and [(L(3)Zn)(2)(mu-OH)(2)](ClO(4))(2) (), which have been structurally characterized by X-ray crystallography, behave as 1 : 1 electrolytes in acetonitrile, indicating that the binuclear cations dissociate into monomeric zinc hydroxide species in solution. Treatment of them with one equivalent of hydroxyphenylthioacetic acid S-methyl ester per zinc center in acetonitrile results in the formation of a zinc alpha-hydroxycarboxylate complex, [(L(2))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O or [(L(3))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O, and CH(3)SH. These reactions, to our knowledge, are the first reported examples of thioester hydrolysis mediated by zinc hydroxide complexes. The results of this study suggest that a terminal Zn-OH moiety may be required for hydrolysis reactivity with a thioester substrate.  相似文献   

13.
Aerobic oxidation of the Mn(II) complex [Mn(Papy3)(H2O)](ClO4) (1, PaPy3- is the anion of the designed ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) in acetonitrile affords the (mu-oxo)dimanganese(III) complex [(Mn(PaPy3))2(mu-O)](ClO4)2 (3) in high yield. The unsupported single oxo bridge between the two high-spin Mn(III) centers in 3 is readily cleaved upon addition of proton sources such as phenol, acetic acid, and benzoic acid, and complexes of the type [Mn(PaPy3)(L)](ClO4) (5, L = PhO-; 6, L = AcO-; 7, L = BzO-) are formed. The basicity of the bridge is evident by the fact that simple addition of methanol to a solution of 3 in acetonitrile affords the methoxide complex [Mn(PaPy3)(OMe)](ClO4) (4). The structures of 3-5 and 7 have been determined. Passage of NO through a solution of 3 in acetonitrile produces the [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)](ClO4) (2) via reductive nitrosylation. Complexes 4-7 also afford the [Mn-NO]6 nitrosyl 2 upon reaction with NO. In the latter case, the anionic O-based ligands (such as MeO- and PhO-) act as built-in bases and promote reductive nitrosylation of the Mn(III) complexes.  相似文献   

14.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

15.
Lu TT  Lai SH  Li YW  Hsu IJ  Jang LY  Lee JF  Chen IC  Liaw WF 《Inorganic chemistry》2011,50(12):5396-5406
In addition to probing the formation of dinitrosyl iron complexes (DNICs) by the characteristic Fe K-edge pre-edge absorption energy ranging from 7113.4 to 7113.8 eV, the distinct S K-edge pre-edge absorption energy and pattern can serve as an efficient tool to unambiguously characterize and discriminate mononuclear DNICs and dinuclear DNICs containing bridged-thiolate and bridged-sulfide ligands. The higher Fe-S bond covalency modulated by the stronger electron-donating thiolates promotes the Fe → NO π-electron back-donation to strengthen the Fe-NO bond and weaken the NO-release ability of the mononuclear DNICs, which is supported by the Raman ν(Fe-NO) stretching frequency. The Fe-S bond covalency of DNICs further rationalizes the binding preference of the {Fe(NO)(2)} motif toward thiolates following the trend of [SEt](-) > [SPh](-) > [SC(7)H(4)SN](-). The relative d-manifold energy derived from S K-edge XAS as well as the Fe K-edge pre-edge energy reveals that the electronic structure of the {Fe(NO)(2)}(9) core of the mononuclear DNICs [(NO)(2)Fe(SR)(2)](-) is best described as {Fe(III)(NO(-))(2)}(9) compared to [{Fe(III)(NO(-))(2)}(9)-{Fe(III)(NO(-))(2)}(9)] for the dinuclear DNICs [Fe(2)(μ-SEt)(μ-S)(NO)(4)](-) and [Fe(2)(μ-S)(2)(NO)(4)](2-).  相似文献   

16.
Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe(2)bdpi, and HMe(4)bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)aminomethyl)imidazole, HMe(2)bdpi = 4,5-bis((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)aminomethyl)imidazole, HMe(4)bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)aminomethyl)imidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu,Zn-SOD). The corresponding mononucleating ligands, MeIm(Py)(2), MeIm(Me)(1), and MeIm(Me)(2) (MeIm(Py)(2) = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine, MeIm(Me)(1) = (1-methyl-4-imidazolylmethyl)(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, MeIm(Me)(2) = (1-methyl-4-imidazolyl-methyl)bis(6-methyl-2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)-Cu(II) homodinuclear complexes represented as [Cu(2)(bdpi)(CH(3)CN)(2)](ClO(4))(3).CH(3)CN.3H(2)O (1), [Cu(2)(Me(2)bdpi)(CH(3)CN)(2)](ClO(4))(3) (2), [Cu(2)(Me(4)bdpi)(H(2)O)(2)](ClO(4))(3).4H(2)O (3), a Cu(II)-Zn(II) heterodinuclear complex of the type of [CuZn(bdpi)(CH(3)CN)(2)](ClO(4))(3).2CH(3)CN (4), Cu(II) mononuclear complexes of [Cu(MeIm(Py)(2))(CH(3)CN)](ClO(4))(2).CH(3)CN (5), [Cu(MeIm(Me)(1))(CH(3)CN)](ClO(4))(2)( )()(6), and [Cu(MeIm(Me)(2))(CH(3)CN)](ClO(4))(2)( )()(7) have been synthesized and the structures of complexes 5-7 determined by X-ray crystallography. The complexes 1-7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazole nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH(3)CN or H(2)O) which can be readily replaced by a substrate. The reactions between complexes 1-7 and hydrogen peroxide (H(2)O(2)) in the presence of a base at -80 degrees C yield green solutions which exhibit intense bands at 360-380 nm, consistent with the generation of hydroperoxo Cu(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degrees C exhibit a strong resonance-enhanced Raman band at 834-851 cm(-1), which shifts to 788-803 cm(-1) (Deltanu = 46 cm(-1)) when (18)O-labeled H(2)O(2) was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm(-1) (in the case of H(2)(18)O(2), Deltanu = 46 cm(-1)), respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.  相似文献   

17.
Five copper complexes [(L(1))(2)Cu(H(2)O)](ClO(4))(2) (1), [(L(1))Cu(H(2)O)(3)](ClO(4))(2) (1a), [(L(3))(2)Cu(H(2)O)](ClO(4))(2) (2), [(L(5))(2)Cu(H(2)O)](ClO(4))(2) (3) and [(L(6))(2)Cu](ClO(4)) (4) (where L(1) = 1,10-phenanthroline, L(3) = 1,10-phenanthroline-5,6-dione, L(5) = 1,10-phenanthrolinefuroxan and L(6) = 2,9-dimethyl-1,10-phenanthrolinefuroxan), and in situ prepared copper complexes of 2,9-dimethyl-1,10-phenanthroline (L(2)) or 2,9-dimethyl-1,10-phenanthrolinedione (L(4)) were used for aerial oxidation of primary alcohols to the corresponding aldehydes under ambient conditions. The copper catalysts have been found to catalyze a series of primary alcohols including one secondary alcohol with moderate turnover numbers and selectivity towards primary alcohols. Copper(ii) complexes 1 (or 1a) and 2 were found to be the better catalysts among all other systems explored in this study. A copper(ii)-superoxo species is implicated to initiate the oxidation reaction. Structural and electronic factors of 1,10-phenanthroline-based ligands affecting the catalytic results for aerial oxidation of alcohols are discussed.  相似文献   

18.
Treatment of a dinuclear zinc hydroxide complex ([(bmnpaZn)(2)(mu-OH)(2)](ClO(4))(2) (1) or [(benpaZn)(2)(mu-OH)(2)](ClO(4))(2) (2)) with excess equivalents of an aryl alcohol derivative (p-HOC(6)H(4)X; X = NO(2), CHO, CN, COCH(3), Br, H, OCH(3)) yielded the nitrogen/sulfur-ligated zinc aryloxide complexes [(bmnpa)Zn(p-OC(6)H(4)NO(2))](ClO(4)) (3), [(benpa)Zn(p-OC(6)H(4)NO(2))](ClO(4)) (4), [(benpa)Zn(p-OC(6)H(4)CHO)](ClO(4)) (5), [(benpa)Zn(p-OC(6)H(4)CN)](ClO(4)) (6), [(benpa)Zn(p-OC(6)H(4)COCH(3))](ClO(4)) x 0.5H(2)O (7), [(benpa)Zn(p-OC(6)H(4)Br)](ClO(4)) (8), [(benpa)Zn(p-OC(6)H(5))](ClO(4)) (9), and [(benpa)Zn(p-OC(6)H(5)OCH(3))](ClO(4)) (10). The solid state structures of 2, 3, 5, and 6 have been determined by X-ray crystallography. While 3 and 6 exhibit a mononuclear zinc ion possessing a distorted five-coordinate trigonal bipyramidal geometry, in 5 each zinc center exhibits a distorted six-coordinate octahedral geometry resulting from coordination of the aldehyde carbonyl oxygen of another zinc-bound aryloxide ligand, yielding a chain-type structure. Zinc coordination of the aldehyde carbonyl of 5 is indicated by a large shift (>40 cm(-)(1)) to lower energy of the carbonyl stretching vibration (nu(C[double bond]O) in solid state FTIR spectra of the complex. In the solid state structures of 3, 5, and 6, a hydrogen-bonding interaction is found between N(3)-H of the supporting bmnpa/benpa ligand and the zinc-bound oxygen atom of the aryloxide ligand (N(3)...O(1) approximately 2.78 A). Solution (1)H and (13)C NMR spectra of 3-10 in CD(3)CN and FTIR spectra in CH(3)CN are consistent with all of the aryloxide complexes having a similar solution structure, with retention of the hydrogen-bonding interaction involving N(3)-H and the oxygen atom of the zinc-coordinated aryloxide ligand. For this family of zinc aryloxide complexes, a correlation was discovered between the chemical shift position of the N(3)-H proton resonance and the pK(a) of the parent aryl alcohol. This correlation indicates that the strength of the hydrogen-bonding interaction involving the zinc-bound aryloxide oxygen is increasing as the aryloxide moiety increases in basicity.  相似文献   

19.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

20.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号