首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral trinuclear (triangular) copper(II) complexes of type [Cu3L3] incorporating the 1,4-aryl linked bis-beta-diketonato bridging ligands, 1,1-(1,4-phenylene)-bis(butane-1,3-dione) (H2L2), 1,1-(1,4-phenylene)-bis(pentane-1,3-dione) (H2L3) and 1,1-(1,4-phenylene)-bis(4,4-dimethylpentane-1,3-dione) (H2L4) have been demonstrated to react with selected heterocyclic nitrogen donor bases to generate extended supramolecular architectures whose structures have been confirmed by X-ray diffraction. Thus on reaction with 4,4'-bipyridine (bipy), [Cu3(L2)3] yields polymeric structures of type {[Cu3(L2)3(bipy)(THF)] x 2.75THF}n and {[Cu3(L2)3(bipy)(THF)] x bipy x 0.75THF}(n) while with pyrazine (pyz), {[Cu3(L2)3(pyz)] x 0.5THF}n was obtained. Each of these extended structures contain alternating triangle/linker units in a one-dimensional polymeric chain arrangement in which two of the three copper sites in each triangular 'platform' are formally five-coordinate through binding to a heterocyclic nitrogen atom. Interaction of the multifunctional linker unit hexamethylenetetramine (hmt) with [Cu3(L3)3] afforded an unusual, chiral, three-dimensional molecular framework of stoichiometry [Cu3(L3)3(hmt)]n. The latter incorporates the trinuclear units coordinated to three triply bridging hmt units. In marked contrast to the formation of the above structures incorporating bifunctional linker units and five-coordinate metal centres, the trinuclear platform [Cu3(L2)3] reacts with the stronger difunctional base 1,4-diazabicyclo[2.2.2]-octane (dabco) to yield a highly symmetric trigonal columnar species of type {[Cu3(L4)3(dabco)3] x 3H2O}n in which each copper centre is octahedrally coordinated.  相似文献   

2.
Reaction of Ag(tcm), tcm = tricyanomethanide, C(CN)(3)(-), with a range of terminal and bridging ligands results in formation of a series of new coordination polymers. Recrystallization of Ag(tcm) from acetonitrile generates Ag(tcm)(MeCN), which is composed of corrugated (6,3) sheets displaying two-fold 2D --> 2D parallel interpenetration and is topologically identical to the parent Ag(tcm) structure. Ag(tcm)(L) species, L = 1,4-diazobicyclo-[2.2.2]-octane (dabco) or 4,4'-bipyridine (bipy), contain two interpenetrating 3D networks composed of 3-connecting (tcm) and 5-connecting (Ag) centers. The structure of Ag(tcm)(bpe), bpe = 1,2-bis(4-pyridyl)ethene, contains 1D ladderlike polymers connected by weak Ag-tcm interactions into two interpenetrating 3D nets. Ag(tcm)(Mepyz)(3/2), Mepyz = methylpyrazine, also contains 1D ladders, while Ag(tcm)(Me(4)pyz)(1/2), Me(4)pyz = tetramethylpyrazine, contains 2D sheets composed of Ag(tcm) 1D "tubes" linked by bridging Me(4)pyz ligands. Ag(tcm)(hmt), hmt = hexamethylenetetramine, has a 3D network structure in which the hmt ligands are 3-connecting, the tcm anions are 2-connecting, and the silver atoms are 5-connecting. The topology is the same as displayed by Ag(tcm)(L), L = dabco or bipy.  相似文献   

3.
A range of 1,3-aryl linked, bis-beta-diketone derivatives (LH2) has been employed to synthesise neutral bis(ligand), dinuclear complexes incorporating square-planar copper(II) and tris(ligand) dinuclear helical derivatives containing octahedral iron(III). The 1H NMR spectra of the free ligands contain singlet peaks at ca. 16.2 ppm, indicative of enolic protons, confirming that the (bis) enol tautomer is present in solution. An X-ray structure of a ligand from the series incorporating tert-butyl terminal substituents confirms that the same tautomer persists in the solid and that the relative orientation of the bis-beta-diketone fragments is such that the coordination vectors lie at approximately 120 degrees to each other. The planar, dinuclear copper complexes form 1 : 2 adducts with pyridine and 4-(dimethylamino)pyridine, confirmed by X-ray structures, that incorporate five-coordinate metal centres. Based on this behaviour, the prospect of linking copper centres in the dinuclear complexes using the difunctional heterocyclic bases, 4,4'-bipyridine, 4,4'-trans-azopyridine and pyrazine as co-ligands has been probed. However, 4,4'-bipyridine was observed to coordinate through only one of its heterocyclic nitrogen atoms in the solid state to form a 1 : 2 ([Cu2(L)2]: 4,4'-bipyridine) adduct, analogous to the structures obtained with the above mono-functional nitrogen bases. Nevertheless, an X-ray structure determination shows that the related difunctional base, 4,4'-trans-azopyridine, coordinates in a bridging fashion via both its heterocyclic nitrogen atoms on alternate sides of each planar [Cu2(L)2] unit to produce an infinite one dimensional metallo chain. In contrast, with pyrazine, a new neutral, discrete assembly of type [Cu4(L)4(pyrazine)2] is formed. The X-ray structure shows that two planar dinuclear complexes are linked by two pyrazine molecules in a sandwich arrangement such that the coordination environment of each copper ion is approximately square pyramidal with the overall tetranuclear structure thus taking the form of a 'dimer of dimers'.  相似文献   

4.
Lang JP  Xu QF  Zhang WH  Li HX  Ren ZG  Chen JX  Zhang Y 《Inorganic chemistry》2006,45(26):10487-10496
In our working toward the rational design and synthesis of cluster-based supramolecular architectures, a set of new [WS4Cu4]- or [MoOS3Cu3]-based supramolecular assemblies have been prepared from reactions of preformed cluster compounds [Et4N]4[WS4Cu4I6] (1) and [(n-Bu)4N]2[MoOS3Cu3X3] (2, X = I; 3, X = SCN) with flexible ditopic ligands such as dipyridylsulfide (dps), dipyridyl disulfide (dpds), and their combinations with dicyanamide (dca) anion and 4,4'-bipy. The cluster precursor 1 reacted with dps or dpds and sodium dicyanamide (dca) in MeCN to produce [WS4Cu4I2(dps)3].2MeCN (4.2MeCN) and [WS4Cu4(dca)2(dpds)2].Et2O.2MeCN (5.Et2O.2MeCN), respectively. On the other hand, treatment of 2 with dpds in DMF/MeCN afforded [MoOS3Cu3I(dpds)2].0.5DMF.2(MeCN)0.5 (6.0.5DMF.2(MeCN)0.5) while reaction of 3 with sodium dicyanamide (dca) and 4,4'-bipy in DMF/MeCN gave rise to [MoOS3Cu3(dca)(4,4'-bipy)1.5].DMF.MeCN (7.DMF.MeCN). Compounds 4.2MeCN, 5.Et2O.2MeCN, 6.0.5DMF.2(MeCN)0.5, and 7.DMF.MeCN have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray crystallography. Compound 4 contains a 2D layer array made of the saddle-shaped [WS4Cu4] cores interlinked by three pairs of Cu-dps-Cu bridges. Compound 5 has another 2D layer structure in which the [WS4Cu4] cores are held together by four pairs of Cu-dca-Cu and Cu-dpds-Cu bridges. Compound 6 displays a 1D spiral chain structure built of the nido-like [MoOS3Cu3] cores via two pairs of Cu-dpds-Cu bridges. Compound 7 consists of a 2D staircase network in which each [MoOS3Cu3(4,4'-bipy]2 dimeric unit interconnects with four other equivalent units by a pair of 4,4'-bipy ligands and two pairs of dca anions. The [WS4Cu4] core in 4 or 5 and the [MoS3Cu3] core in 7 show a planar 4-connecting node and a seesaw-shaped 4-connecting node, respectively, which are unprecedented in cluster-based supramolecular compounds. The successful assembly of 4-7 from the three cluster precursors 1-3 through flexible ditopic ligands provides new routes to the rational design and construction of complicated cluster-based supramolecular arrays.  相似文献   

5.
Three coordination polymers containing zinc and diphenic acid (H2dpa) were synthesised by solvothermal reaction. Zn(dpa)(H2O) is a one-dimensional coordination polymer that consists of parallel ladder-like chains. One carboxylate group of the diphenic acid coordinates two zinc atoms forming a dinuclear unit which composes the steps of the ladder. The other carboxylate connects to a zinc atom in the next step of the ladder. The fourth coordination site at the zinc atom is occupied by water. Attempts to crosslink the chains by replacing the water molecule with the neutral ligands triethylenediamine (dabco) or 4,4'-bipyridyl lead to the compounds Zn2(dpa)2(dabco) and Zn(dpa)(4,4'-bpy). Their structures can be rationalised as being derived from action of the neutral ligand on Zn(dpa)(H2O), and while they are most conveniently prepared in a one-pot synthesis, it is also possible to obtain them by exposing Zn(dpa)(H2O) to the respective neutral ligand. Zn2(dpa)2(dabco) is a layered two-dimensional coordination polymer in which dinculear zinc carboxylate paddle wheel units and the dabco ligand form infinite linear chains. The chains are interconnected by the dpa unit. The structure of Zn(dpa)(4,4'-bpy) consists of two identical interpenetrating three-dimensional networks. In the network, helical Zn(dpa) chains are interconnected by the rigid 4,4'-bipyridine ligand. Thermogravimetric analysis indicates a high thermal stability of this coordination polymer with decomposition occurring in the range 350-450 degrees C. This is complemented by X-ray thermodiffractometry that indicates a phase transition at 337 degrees C and the final loss of crystallinity at 427 degrees C. The room temperature phase expands drastically along one axis and contracts along the other two axes on heating.  相似文献   

6.
The copper(II) complex Cu(2)L(OMe)(H(2)O)(3), [middle dot]3H(2)O [H(3)L = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine] was obtained and recrystallised in methanol to yield crystals of [[Cu(2)L(OMe)]](2).2.5MeOH.4H(2)O, 1.2.5MeOH.4H(2)O. Its single X-ray study shows that it contains two crystallographically different but chemically equivalent dinuclear [Cu(2)L(OMe)] 1 molecules in the asymmetric unit cell. The copper atoms of each dinuclear moiety are in distorted square-pyramidal environments, with both pyramids sharing an apical phenolate and a basal methanolate oxygen atom. Magnetic characterisation of 1.3H(2)O shows a quite strong intramolecular ferromagnetic coupling between both metal atoms. Extended Huckel calculations reveal that the intradinuclear magnetic interaction seems to be mediated by the exogenous methanolate bridging ligand.  相似文献   

7.
Cao R  Shi Q  Sun D  Hong M  Bi W  Zhao Y 《Inorganic chemistry》2002,41(23):6161-6168
Four polymeric complexes with rectangular grids or channels, [Cu2(btec)(H2O)4*2H2O]n (2), [Cu2(btec)4/4[Cu(Hbtec)2/2(4,4'-Hbpy)(H2O)2]2*4H2O]n (3), [Cu2(btec)(hmt)(H2O)4*8H2O]n (4), and [Cu3(btec)(OH)2]n (5), were designed and constructed from Cu(II) ion and 1,2,4,5-benzenetetracarboxylic acid along with auxiliary ligands (where H4btec = 1,2,4,5-benzenetetracarboxylic acid, 4,4'-Hbpy = monoprotonated 4,4'-bipyridine, and hmt = hexamethylenetetramine). Complexes 2, 3, and 4 have rectangular pores with the size of 6.5 A x 4.5 A, 6 A x 7 A, and 10.1 A x 11.8 A, respectively, while 5 has a channel of 7.4 A x 9.6 A. The complexes show interesting magnetic properties due to the different coordination modes of the carboxylate groups and the presence of auxiliary ligands. On lowering the temperature, the magnetic interactions in 2 are changed from antiferromagnetic to ferromagnetic. For 3, the antiferromagnetic interactions weaken sharply at low temperature. Complex 4 shows ferromagnetic interactions while 5 is antiferromagnetic.  相似文献   

8.
The synthesis and the characterization of new dinuclear copper(II) compounds of general formula [(L(a-d))(2)Cu(2)(μ-N-N)](ClO(4))(2) (1-6) with either neutral aliphatic diamine (N-N = piperazine, pip) or aromatic diimine (N-N = 4,4'-bipyridine, 4,4'-bipy) linker are reported. The copper ligands L(-) (L(a-) = (E)-2-((2-aminoethylimino)methyl)phenolate, L(b-) = (E)-2-((2-aminopropylimino)methyl)-phenolate, L(c-) = (E)-2-((2-aminoethylimino)methyl)4-nitrophenolate, L(d-) = (E)-2-((2-aminoethylimino)methyl)4-methoxyphenolate) are NNO tridentate Schiff bases derived from the monocondensation of a substituted salicylaldehyde 5-G-salH (G = NO(2), H, OMe) with ethylenediamine, en, or 1,3-propylenediamine, tn. The crystal structures of compounds [(L(a))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (1·2MeOH), [(L(b))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (2·2MeOH), [(L(d))(2)Cu(2)(μ-4,4'-bipy)](ClO(4))(2) (4), [(L(a))(2)Cu(2)(μ-pip)](ClO(4))(2) (5) and [(L(b))(2)Cu(2)(μ-pip)](ClO(4))(2) (6) have been determined, revealing the preferred (e-e)-chair conformation of the bridging piperazine in compounds 5 and 6. The presence of hydrogen-bond-mediated intermolecular interactions, that involve the methanol molecules, yields dimers of dinuclear units for 1·2MeOH, and infinite zig-zag chains for 2·2MeOH. The temperature dependences of the magnetic susceptibilities χ(M)(T) for all compounds were measured, indicating the presence of antiferromagnetic Cu-Cu exchange. For the compounds 2-4 with 4,4'-bipy, the coupling constants J are around -1 cm(-1), while in compound 1 no interaction could be detected. The compounds 5 and 6 with piperazine display higher Cu-Cu magnetic interactions through the σ-bonding backbone of the bridging molecule, with J around -8 cm(-1), and the coupling is favoured by the (e-e)-chair conformation of the diamine ring. The non-aromatic, but shorter, linker piperazine gives rise to stronger Cu-Cu antiferromagnetic couplings than the aromatic, but longer, 4,4'-bipyridine. In the latter case, the rotation along the C-C bond between the two pyridyl rings and the consequent non co-planarity of the two copper coordination planes play an important role in determining the magnetic communication. EPR studies reveal that the dinuclear species are not stable in solution, yielding the solvated [(L)Cu(MeOH)](+) and the mononuclear [(L)Cu(N-N)](+) species; it appears that the limited solubility of the dinuclear compounds is responsible for their isolation in the solid state.  相似文献   

9.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

10.
Reaction of Cu(I), tricyanomethanide (tcm , C(CN)3-) and L = either hexamethylenetetramine (hmt), 4,4'-bipyridine (bipy) or 1,2-bis(4-pyridyl)ethene (bpe) gives crystals of [Cu(tcm)(hmt)] (1), [Cu(tcm)(bipy)] (2) and [Cu(tcm)(bpe)] x 0.25 bpe x 0.5 MeCN (3), respectively. Crystal structure analysis shows 1-3 all contain closely related puckered (4,4) sheets composed of tetrahedral Cu(I) ions bridged by 2-connecting tcm- and L. The crystal packing, however, varies markedly with L. In 1 the sheets interdigitate in pairs. In 2 the sheets participate in parallel interpenetration in pairs. In 3 guest bpe and MeCN molecules are intercalated in channels formed by the stacking of the sheets.  相似文献   

11.
The new pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine (TL(tBu)) has been prepared in high yield from 2,6-bis(hydroxymethyl)pyridine (1) and 1,3-di-tert-butylimidazolin-2-imine (3). Reaction of TL(tBu) with [Cu(MeCN)4]PF6 affords the highly reactive copper(I) complex [(TL(tBu))Cu]PF6, [5]PF6, which forms the stable copper(I) isocyanide complexes [6a]PF6 (nu(CN) = 2179 cm(-1)) and [6b]PF6 (nu(CN) = 2140 cm(-1)) upon addition of tert-butyl or 2,6-dimethylphenyl isocyanide, respectively. For the cations 6a and 6b, DFT calculations reveal ground-state electronic structures of the type [(TL(tBu)-kappaN(1):kappaN(2))Cu(CNR)] with tricoordinate geometries around the copper atoms. Exposure of [5]PF6 to the air readily leads to trapping of atmospheric CO2 to form the square-planar complex [(TL(tBu))Cu(HCO3-kappaO)]PF6, [7]PF6, with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. In chlorinated solvents such as dichloromethane or chloroform, [5]PF(6) rapidly abstracts chloride by reductive dechlorination of the solvent to yield [(TL(tBu))CuCl]PF6, [8]PF6 quantitatively. Reaction of TL(tBu) with copper(I) bromide or chloride affords complexes 9a and 9b, respectively, for which X-ray diffraction analysis, low-temperature NMR experiments and DFT calculations reveal the presence of a kappa(2)-coordinated ligand of the type [(TL(tBu)-kappaN(1):kappaN(2))CuX]. In solution, complex 9b undergoes slow disproportionation forming the mixed-valence copper(II)/copper(I) system [(TL(tBu))CuCl][CuCl2], [8]CuCl2 with a linear dichlorocuprate(I) counterion.  相似文献   

12.
A total of 21 complexes of CuX (X = Cl, Br, I) with bridging ligand (B = 4,4'-dipyridyl (Bpy), pyrazine (Pyz), quinoxaline (Quin), phenazine (Phz), 1,4-diazabicyclo[2.2.2]octane (DABCO), and hexamethylenetetramine (HMTA)) have been synthesized. The products show two stoichiometries: [CuXB] (type 1) and [(CuX)2B] (type 2). Both types can be obtained for B = Bpy, depending on the conditions of preparation. In these cases, the type 2 stoichiometry is the kinetic product. Type 2 complexes only are found for B = Pyz (X = I), Quin, Phz, DABCO, and HMTA. Type 1 complexes form for Pyz (X = Cl, Br). Thermogravimetic analyses of the complexes reveal the general decomposition trend: 1 --> 2 --> [(CuX)2B(1/2)] --> CuX. The X-ray crystal structure of [CuBr(Pyz)] (type 1) features copper atoms bridged by Br and Pyz, forming 2D sheets of fused rectangular Cu4Br2(Pyz)2 units. The X-ray structure of [(CuI)2(Quin)] (type 2) shows 2D layers composed of [Cu2I2]infinity "stair step" chains which are cross-linked by Quin ligands. A total of 16 complexes of CuXL (L = P(OPh)3) with bridging ligand (B = those above and 1,4-dimethylpiperazine (DMP)) have also been prepared. All of these products, except those of HMTA, are of type 3 formulation, [(CuXL)2B]. The HMTA products have the formula [CuX(HMTA)], type 4. Thermal decomposition of the type 3 and 4 complexes occurs with initial loss of B, L, or both. The X-ray structures of [(CuBrL)2(Bpy)] and [(CuBrL)2(Pyz)] (type 3) reveal 1D chains formed from rhomboidal (LCu)2Br2 units linked by the B ligand. The type 4 structure of [CuBrL(HMTA)] is shown by X-ray to be a simple halide-bridged dimer.  相似文献   

13.
Self assembly of the ditopic ligand L1 with Cu2+ gives the dinuclear double helicate [Cu2(L1)2]4+, which can further coordinate s-block cations. This coordination alters the helicate pitch to a variety of different lengths depending on the size and charge of the guest cation.  相似文献   

14.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

15.
The synthesis and structures of six compounds prepared in two different systems have been explored with the purpose of isolating coordination polymers with interlaced triple-stranded molecular braid architectures. The dinuclear paddle-wheel units of [Cu(2)(maa)(4)2 H(2)O] can be rationally tuned to form three classes of isomorphous compounds, namely [Cu(2)(maa)(4)(bpp)] (1) (bpp=1,3-bis(4-pyridyl)propane, Hmaa=2-methylacrylic acid), [Cu(3)(maa)(6)(bpp)(2)] (2), and[Cu(4)(maa)(8)(bpp)(4)(H(2)O)(2)]2 H(2)O (3), with a bridging bpp ligand, at controlled ligand-to-metal molar ratios, and lead to three coordination polymers having similar one-dimensional characteristics but different mono- and dinuclear nodes. Compound 1, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1:1, contains a zigzag chain containing dinuclear nodes, whereas polymer 2, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1.5:1, also adopts the topology of a zigzag chain but with both mono- and dinuclear nodes. Compound 3, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 2:1, contains a neutral, interlaced, triple-stranded molecular braid, which is interwoven by three single-stranded meso-helical chains that contain only a mononuclear node. With the three aromatic chelating terminal ligands 2,2':6',2'-terpyridine (tpy), 1,10-phenanthroline (phen), and di(2-pyridyl)amine (dpa) we have also prepared three neutral complexes containing the linear, rigid bridging ligand biphenyl-4,4'-dicarboxylate (bpdc), namely [Cd(bpdc)(tpy)]H(2)O (4), [Cu(bpdc)(phen)(2)]4.25 H(2)O (5), and [Cu(bpdc)(dpa)] (6). An infinite meso-helix is formed initially in 4, and then three of these chains assemble into a triple-stranded braid similar to that of 3. Complexes 5 and 6 have a mononuclear and a looped dinuclear structure, respectively. Compounds 3 and 4 are unusual examples of triple-stranded molecular braid coordination frameworks based on different types of co-ligands.  相似文献   

16.
The new ditopic catecholamide 3,7,11-tris-{N-[3,4-(dihydroxybenzoyl)-aminopropyl]} derivative of a 14-membered tetraazamacrocycle containing pyridine (H(6)L(1)) has been synthesized. The protonation constants of (L(1))(6-) and the stability constants of its mono-, homo- and hetero-dinuclear complexes with Fe(3+), Cu(2+) and Zn(2+) metal ions were determined at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO(3). The large overall basicity of the ligand was ascribed to the very high protonation constants of the catecholate groups, and its acid-base behaviour was correlated with the presence of tertiary nitrogen atoms and secondary amide functions. The UV-vis spectrum of the red solution of [FeL(1)](3-) complex exhibits the LMCT band of catecholate to iron(III), and its EPR spectrum revealed a typical isotropic signal of a rhombic distorted ferric centre in a high-spin state and E/D approximately 0.31, both characteristic of a tris-catecholate octahedral environment. The ligand forms with copper(II) and zinc(II) ions mono- and dinuclear protonated complexes and their stability constants were determined, except for the [ML(1)](4-) complexes as the last proton is released at very high pH. Electronic spectroscopic studies of the copper complexes revealed the involvement of catecholate groups in the coordination to the metal centre in the mono- and dinuclear copper(II) complexes. This information together with the determined stability constants indicated that the copper(II) ion can be involved in both types of coordination site of the ligand with comparable binding affinity. The EPR spectrum of [Cu(2)L(1)](2-) showed a well resolved seven-line hyperfine pattern of copper(II) dinuclear species typical of a paramagnetic triplet spin state with weak coupling between the two metal centres. Thermodynamically stable heterodinuclear complexes, [CuFeH(h)L(1)](h-1) (h = 0-3) and [CuZnH(h)L(1)](h-2) (h = 0-4), were formed as expected from a ditopic ligand having two dissimilar coordination sites. At physiological pH, the [CuFeL(1)](-) complex is formed at approximately 100%. The formation of the [CuFeH(h)L(1)](h-1) complexes in solution was supported by electronic spectroscopic measurements. The data indicated the specific coordination of each metal centre at the dissimilar sites of the ligand, the iron(III) bound to the oxygen donors of the catecholate arms and the copper(II) coordinated to the amine donors of the macrocyclic ring. The two metal centres are weakly coupled, due to the fairly large distance between them.  相似文献   

17.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

18.
The reaction of dinuclear copper(II) cryptates with calcium cyanamide, CaNCN, and sodium dicyanamide, Na[N(CN)(2)] results in dinuclear compounds of formulae [Cu(2)(HNCN)(R3Bm)](ClO(4))(3) (1), [Cu(2)(dca)(R3Bm)](ClO(4))(3)4H(2)O (2), and [Cu(2)(NCNCONH(2))(R3Bm)](CF(3)SO(3))(3) (3), in which R3Bm=N[(CH(2))(2)NHCH(2)(C(6)H(4)-m)CH(2)NH(CH(2))(2)](3)N and dca=dicyanamido ligand (NCNCN(-)). The X-ray diffraction analysis reveals for both 1 and 3 a dinuclear entity in which the copper atoms are bridged by means of the -NCN- unit. The molar magnetic susceptibility measurements of 1-3 in the 2-300 K range indicate ferromagnetic coupling. The calculated J values, by using theoretical methods based on density functional theory (DFT) are in excellent agreement with the experimental data. Catalytic hydration of a nitrile to an amide functional group is assumed responsible for the formation of 3 from a mu(1,3)-dicyanamido ligand.  相似文献   

19.
The dinuclear compound [CuL2(py)U(acac)2] has been synthesized by treating [Cu(H2L2)] with U(acac)4 (L2 = N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine) and shows the antiferromagnetic Cu-U interaction; the distinct magnetic behaviour of the trinuclear complexes [(CuL2)2U] (antiferromagnetic) and [[CuL1(py)]U[CuL1]] (ferromagnetic) revealed the major influence of the Cu(II) ion coordination on the exchange interaction (L1 = N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine).  相似文献   

20.
Nanda PK  Aromí G  Ray D 《Inorganic chemistry》2006,45(8):3143-3145
The cluster [NaCu4L2(N3)2](ClO4) [1; H3L is 2-(2'-hydroxyphenyl)-1,3-bis[3'-aza-4'-(2'-hydroxyphenyl)prop-4'-en-1'-yl]-1,3-imidazolidine] has been synthesized and structurally characterized. Complex 1 is formed by the template assembly of two [Cu2L(N3)] neutral fragments through their weak oxophilic interactions with a central Na+ cation as observed in metallacrowns. The cluster exhibits a combination of ferro- and antiferromagnetic interactions. End-on N3- bridging of copper ions within the [Cu(II)2] units facilitates stabilization of S = 1 magnetic subunits that mutually cancel via antiferromagnetic coupling as mediated by the O...Na+...O bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号