首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regular perturbation analysis is presented for the following laminar natural convection flows of Newtonian fluids with temperature-dependent effective viscosity: a freely-rising plane plume, the flow above a horizontal line source on an adiabatic surface (a plane wall plume) and the flow adjacent to a vertical uniform flux surface for porous medium. The temperature-dependent effective viscosity introduces nonsimilarity into the governing equations. Numerical results are presented for the flow and heat transfer characteristics.  相似文献   

2.
A regular two-parameter perturbation analysis based upon the boundary layer approximation is presented here to study the radiative effects of both first- and second-order resistances due to a solid matrix on the natural convection flows in porous media. Four different flows have been studied, those adjacent to an isothermal surface, a uniform heat flux surface, a plane plume and the flow generated from a horizontal line energy source on a vertical adiabatic surface. The first-order perturbation quantities are presented for all these flows. Numerical results for the four conditions with various radiation parameters are tabulated.  相似文献   

3.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid via a porous medium bounded by a semi-infinite vertical porous plate in the presence of a transverse magnetic field. The plate moves with constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. A uniform magnetic field acts perpendicularly to the porous surface in which absorbs the micropolar fluid with a suction velocity varying with time. Numerical results of velocity distribution of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Also, the results of the skin-friction coefficient, the couple stress coefficient, the rate of the heat and mass transfers at the wall are prepared with various values of fluid properties and flow conditions.  相似文献   

4.
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.  相似文献   

5.
Using the theory of micropolar fluids developed by Eringen, the transverse curvature effects on axisymmetric free convection boundary layer flow of a micropolar fluid past slender vertical cones are investigated. The case of constant surface heat flux is considered in this paper. Using perturbation techniques, the governing equations for momentum, angular momentum and energy have been solved numerically. Graphical representations for the velocity, angular velocity and thermal functions are presented for various physical and fluid property parameters.  相似文献   

6.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2008,43(4):411-418
The mixed convection two-dimensional boundary layer flow of a micropolar fluid near the stagnation point on a stretching vertical sheet is investigated. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation point. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a finite-difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed. Both assisting and opposing flows are considered. Results are presented in terms of the skin friction coefficient and the local Nusselt number with selections of velocity, microrotation and temperature profiles. Dual solutions are found to exist for the opposing flow.  相似文献   

7.
The instability mechanism of single and multilayer flow of Newtonian and viscoelastic fluids down an inclined plane has been examined based on a rigorous energy analysis as well as careful examination of the eigenfunctions. These analyses demonstrate that the free surface instability in single and multilayer flows in the limit of longwave disturbances (i.e., the most dangerous disturbances) arise due to the perturbation shear stresses at the free surface. Specifically, for viscoelastic flows, the elastic forces are destabilizing and the main driving force for the instability is the coupling between the base flow and the perturbation velocity and stresses and their gradient at the free surface. For Newtonian flows at finite Re, the driving force for the interfacial instability in the limit of longwaves depends on the placement of the less viscous fluid. If the less viscous fluid is adjacent to the solid surface then the main driving force for the instability is interfacial friction, otherwise the bulk contribution of Reynolds stresses drives the instability. For viscoelastic fluids in the limit of vanishingly small Re, the driving force for the instability is the coupling of the base flow and perturbation velocity and stresses and their gradients across the interface. In the limit of shortwaves the interfacial stability mechanism of flow down inclined plane is the same as plane Poiseuille flows (Ganpule and Khomami 1998, 1999a, b). Received: 20 October 2000/Accepted: 11 January 2001  相似文献   

8.
The mixed convection flow due to a line thermal source embedded at the leading edge of an adiabatic vertical plane surface immersed in a saturated porous medium has been studied. Both weakly and strongly buoyant plume regimes have been considered. The cases of buoyancy assisting and buoyancy opposing flow conditions have been incorporated in the analysis. The results are presented for the entire range of buoyancy parameter from the pure forced convection (ξ=0) to the pure free convection (ξ → ∞@#@) regimes. For buoyancy-assisting flow, the wall temperature and the velocity at the wall increase as the plume strength increases. However, they all decrease as the free-stream velocity increases. For buoyancyopposing flow, the temperature at the wall increases as the strength of the plume increases but velocity at the wall decreases.  相似文献   

9.
The results of an experimental investigation of a developed convective plume proceeding from a laser-radiation-generated point heat source in a fluid with a high Prandtl number Pr = 2×103 in the presence of background cellular convective flow are presented. It is found that when the plume growth velocity is similar in value with the characteristic velocity of the cellular convective flow the plume can take the shape of a vertical plane spiral.  相似文献   

10.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity.The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature.The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters.In comparison with the previously published work,the excellent agreement is shown.The effects of various parameters on the velocity,the microrotation velocity,and the temperature profiles,as well as the skin-friction coefficient and the Nusselt number,are plotted and discussed.  相似文献   

11.
A transient free convective boundary layer flow of micropolar fluids past a semi-infinite cylinder is analysed in the present study. The transformed dimensionless governing equations for the flow, microrotation and heat transfer are solved by using the implicit scheme. For the validation of the current numerical method heat transfer results for a Newtonian fluid case where the vortex viscosity is zero are compared with those available in the existing literature, and an excellent agreement is obtained. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of various parameters and the dependence of the flow and temperature fields on these parameters is discussed. An increase in the vortex viscosity tends to increase the magnitude of microrotation and thus decreases the peak velocity of fluid flow. An increase in the vortex viscosity in micropolar fluids is shown to decrease the heat transfer rate.  相似文献   

12.
The unsteady MHD boundary layer flow of a micropolar fluid near the forward stagnation point of a two dimensional plane surface is investigated by using similarity transformations. The transformed nonlinear differential equations are solved by an analytic method, namely homotopy analysis method (HAM). The solution is valid for all values of time. The effect of MHD and porous medium, non dimensional velocity and the microrotation are presented graphically and discussed. The coefficient of skin friction is also presented graphically.  相似文献   

13.
The effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed. The partial differential equations governing the flow and heat and mass transfer have been solved numerically using an implicit finite-difference scheme. The case corresponding to vanishing of the anti-symmetric part of the stress tensor that represents weak concentrations is considered. The numerical results are validated by favorable comparisons with previously published results. A parametric study of the governing parameters, namely the magnetic field parameter, suction/injection parameter, radiation parameter, chemical reaction parameter, vortex viscosity parameter and the Eckert number on the linear velocity, angular velocity, temperature and the concentration profiles as well as the skin friction coefficient, wall couple stress coefficient, Nusselt number and the Sherwood number is conducted. A selected set of numerical results is presented graphically and discussed.  相似文献   

14.
The problem of mixed convection about non-isothermal vertical surfaces in a saturated porous medium is analysed using boundary layer approximations. The analysis is made assuming that the surface temperature varies as an arbitrary function of the distance from the origin. A perturbation technique has been applied to obtain the solutions. Using the differentials of the wall temperature, which are functions of distance along the surface, as perturbation elements, universal functions are derived for various values of the governing parameter Gr/Re. Both aiding and opposing flows are considered. The universal functions obtained can be used to estimate the heat transfer and fluid velocity inside the boundary layer for any type of wall temperature variation. As a demonstration of the method, heat transfer results have been presented for the case of the wall temperature varying as a power function of the distance from the origin. The results have been studied for various combinations of the parameters Gr/Re and the power index m, taking both aiding and opposing flows into consideration. On comparing these results with those obtained by a similarity analysis, the agreement is found to be good.  相似文献   

15.
An analysis of fully developed combined free and forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates is presented. The flow is modeled using Brinkman equation model. The viscous and Darcy dissipation terms are also included in the energy equation. Three types of thermal boundary conditions such as isothermal–isothermal, isoflux–isothermal, and isothermal–isoflux for the left–right walls of the channel are considered. Analytical solutions for the governing ordinary differential equations are obtained by perturbation series method. In addition, closed form expressions for the Nusselt number at both the left and right channel walls are derived. Results have been presented for a wide range of governing parameters such as porous parameter, ratio of Grashof number and Reynolds number, viscosity ratio, width ratio, and conductivity ratio on velocity, and temperature fields. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature.  相似文献   

16.
Heat transfer in stagnation-point flow towards a stretching sheet   总被引:5,自引:0,他引:5  
 Steady two-dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. Received on 12 July 2000 / Published online: 29 November 2001  相似文献   

17.
Perturbed vortical layers and shear sheltering   总被引:10,自引:0,他引:10  
New theoretical results and physical interpretations are presented concerning the interactions between different types of velocity fields that are separated by thin interfacial layers, where there are dynamically significant variations of vorticity across the layers and, in some cases within them. It is shown how, in different types of complex engineering and environmental flow, the strengths of these interactions vary from the weakest kind of superposition to those where they determine the flow structure, for example by mutual exclusion of velocity fields from the other region across the interface, or by local resonance near the interface. We focus here on the excluding kinds of interactions between, on the one hand, elongated and compact regions containing vortical flows and large variations in velocity, and on the other hand various kinds of weak perturbation in the surrounding external flow region: rotational, irrotational; time-varying, steady; large, small; coplanar, non-coplanar; non-diffusive, diffusive. It is shown how all these kinds of external disturbances can be wholly, or partially, ‘blocked’ at the interface with the vortical region, so that beyond a certain sheltering distance into the interior of this region the fluctuations can be very small. For the special case of quasi-parallel co-planar external straining motions outside non-directional shear flows, weak sheltering occurs if the mean velocity of the shear flow increases – otherwise the perturbations are amplified. For non-parallel flows, the sheltering effect can be greater when the vorticity is distributed in thin vortex sheets. The mechanism whereby the vortical flow induces ‘blocking’ and ‘shear-sheltering’ effects can be quantitatively explained in terms of the small adjustments of the vorticity in the vortical layers, and in some cases by the change in impulse of these layers. If the vorticity in the outer part of the vortical region is weak, it can be ‘stripped away’ by the external disturbances until the remaining vorticity is strong enough to ‘block’ the disturbances and shelter the inner flow of the vortical region. The mechanisms presented here appear to explain on the one hand some aspects of the observed robustness of vortical structures and jet or plume like shear flows in turbulent and geophysical flows, and on the other hand the levels of external perturbation needed to erode or breakdown turbulent shear flows.  相似文献   

18.
In this paper the problem of mixed convection on a moving vertical cylinder with suction in a moving micropolar fluid medium has been investigated, using finite element method. The effect of important parameters, namely micropolar parameter, suction parameter and velocity coefficient parameter have been discussed on the velocity, microrotation and temperature functions when the velocity of the cylinder is greater than the free stream velocity. Skin friction and the Nusselt number have also been computed, which are given in the table. The temperature distribution is effected moderately by the motion of the cylinder as well with the buoyancy parameter.  相似文献   

19.
The paper presents a study of the laminar mixed convection adjacent to vertical continuously stretching sheets, taking into account the effects of variable viscosity and variable thermal diffusivity. The similarity solutions are reported for isothermal sheet moving with a velocity of the form uw=Bx0.5 and a continuous linearly stretching sheet with a linear surface temperature distribution. The equations of conservation of mass, momentum and energy, which govern the flow and heat transfer, are solved numerically by using the shooting method. The numerical results obtained for the flow and heat transfer characteristics reveal many interesting behaviors. The numerical results show that, variable viscosity, variable thermal diffusivity, the velocity exponent parameter, the temperature exponent parameter and the buoyancy force parameter have significant influences on the velocity and temperature profiles, shear stress and Nusselt number in two cases air and water.  相似文献   

20.
E. I. Saad 《Meccanica》2012,47(8):2055-2068
The Stokes axisymmetrical flow of an incompressible micropolar fluid past a viscous fluid sphere and the flow of a viscous fluid past a micropolar fluid sphere are investigated. The appropriate boundary conditions are taken on the surface of the sphere, while the proper conditions applied on the fictitious boundary of the fluid envelope vary depending on the kind of cell-model. These problems are solved separately in an analytical fashion, and the velocity profile and the pressure distribution inside and outside of the droplet are shown in several graphs for different values of the parameters. Numerical results for the normalized hydrodynamic drag force acting, in each case, on the spherical droplet-in-cell are obtained for various values of the parameters representing volume fraction, the classical relative viscosity, the micropolarity and spin parameters are presented both in tabular and graphical forms. Results of the drag force are compared with the previous particular cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号