共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of variations of the Zr:Sn ratio on the microstructure and electric properties of lead lanthanum zirconate stannate titanate (PLZST) antiferroelectric ceramics were investigated. The precursor powders were synthesized by the modified coprecipitation method and all the samples were pure perovskite phase in the XRD patterns. The ceramics sintered at 1100 °C exhibited the highest relative density. With the increasing of Sn4+ content, the grain size of the ceramics was decreased in the SEM and the maximum dielectric constant and the corresponding temperature were decreased. The P-E hysteresis loops indicated that it is helpful to steady the antiferroelectric phase by increasing Sn4+ content. 相似文献
2.
Here, we report dielectric behaviour of lanthanum substituted Ba0.80Pb0.20Ti0.90Zr0.10O3 (BPZT) ceramics. The material series with compositional formula Ba0.80−xLaxPb0.20Ti0.90Zr0.10O3 (BLPZT) with x varying from 0 to 0.01 in the steps of 0.0025 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered at 1325 °C. All the samples were subjected to X-ray diffraction (XRD) analysis and found to be single phase. Dielectric behaviour was studied as a function of frequency and temperature and Curie temperature (Tc) was determined. Tc was found to decrease with increasing x. The details are discussed and presented in this paper. 相似文献
3.
In La(III) substituted PbTiO3 ceramics the behaviour of the reciprocal dielectric constant in the paraelectric phase can be described by the relation with the exponent 1 ?γ<2 depending on the composition. This γ-value is an intermediate of values for Curie-Weiss behaviour (γ = 1) and of values connected with diffuse phase transitions (γ = 2) and increases with increasing La(III) concentration.An excellent agreement between experimental and calculated permittivity curves in the paraelectric phase can be achieved using an alternative equation consisting of a linear and a quadratic term with coefficients varying systematically with the composition. The last equation can be derived and interpreted by means of a physical model assuming the existence of heterophase fluctuations. 相似文献
4.
In the present work, zirconium modified bismuth titanate ceramics have been studied as potential lead-free ferroelectric materials over a broad temperature range (RT – 800 °C). Polycrystalline samples of Bi4Ti3−xZrxO12 (x=0.2, 0.4, 0.6) (BZrT) with high electrical resistivity were prepared using the solution combustion technique. The effect of Zr doping on the crystalline structure, ferroelectric properties and electrical conduction characteristics of BZrT ceramics were explored. Addition of zirconium to bismuth titanate enhances its dielectric constant and reduces the loss factor as it introduces orthorhombic distortion in bismuth titanate lattice which is exhibited by the growth along (0010) lattice plane. Activation energy due to relaxation is found to be greater than that due to conduction thus confirming that electrical conduction in these ceramics is not due to relaxation of dipoles. Remanent polarization of the doped samples increases as the Zirconium content increases. 相似文献
5.
Structural, dielectric, and ferroelectric properties of a novel high-k ‘Y5V’ (Ba1−xLax)(Ti1−x/4−yCey)O3 ceramics (where x=0.03 and y=0.05, denoted by BL3TC5) with the highest ‘Y5V’ dielectric response (ε′>10 000) among rare-earth-doped BaTiO3 ceramics to date are investigated in detail using SEM, TEM, XRD, DSC, EPR, Raman spectroscopy (RS), temperature and frequency, electric field dependences of dielectric permittivity (ε′), and temperature and electric field dependences of ferroelectric hysteresis loops. The BL3TC5 diffusion of ferroelectric phase transition occurs around dielectric peak temperatures (Tm) near a room temperature characteristic of dielectric thermal relaxation. Powder XRD data and defect complex model were given. “Relaxor” behavior associated with an order/disorder model and formation of a solid solution were discussed. The EPR results provided the evidence of Ti vacancies as compensating for lattice defects. High-k relaxor nature of BL3TC5 is characterized by an average cubic structure with long-range lattice disordering and local polar ordering; a slow change of the ε′ (T) and Pr(T) curves around Tm; no phase transition observed by DSC; and a broad, red-shifted A1 (TO2) Raman phonon mode at 251 cm−1 accompanying the disappearance of the “silent” mode at 305 cm−1 and a clear anti-resonance effect at 126 cm−1 at room temperature. 相似文献
6.
B. Harihara Venkataraman 《Journal of Physics and Chemistry of Solids》2003,64(11):2105-2112
This paper reports the dielectric and impedance characteristics of ferroelectric SrBi2Nb2O9 (SBN) ceramics in the 100 Hz-1 MHz frequency range at various temperatures (300-823 K). A strong low frequency dielectric dispersion (LFDD) associated with an impedance relaxation has been found to exist in these ceramics in the temperature range 573-823 K. The Z″ of the AC complex impedance showed two distinct slopes in the frequency range 100 Hz-1 MHz suggesting the existence of two dispersion mechanisms. This non-ideal behavior has been explained on the basis of the expression, Z*=R0/(1+(iω/ω1)m+(iω/ω2)n) [J. Phys. Chem. Solids 53 (1992) 1] where ω1 and ω2 characterize the lattice response and the charge carrier behavior, respectively. The exponents m and n were obtained from the curve fitting. The exponent n was found to exhibit a minimum at the Curie temperature, Tc (723 K) whereas the m was temperature independent. 相似文献
7.
M. Raghavender 《Journal of Physics and Chemistry of Solids》2006,67(8):1803-1808
Na0.5Bi(0.5−x) SmxTiO3 (NBST) ceramics with x=0.05, 0.1, and 0.15 are prepared through chemical route. The X-ray diffraction studies confirmed the formation of single phase. Dielectric measurements in the temperature region ranging from room temperature (∼30 °C) to 600 °C at different frequencies (10 kHz-1 MHz) showed anomalies at 130, 306, and 474 °C (at 10 kHz frequency) for x=0.05 sample. Other samples showed only two peaks. To establish the electrical nature of these relaxations, impedance measurements are done at different temperatures and frequencies. The relaxation time, obtained from both impedance and modulus data, is found to decrease with increase in temperature. The relaxations observed are of non-Debye type. Increase in samarium content increases the activation energy for relaxation. 相似文献
8.
This work reports the gas/solid equilibration kinetics for the O2/CaTiO3 system. The electrical conductivity measurement was applied for monitoring the kinetics in the ranges of temperature 973-1323 K and oxygen partial pressure 10 Pa-72 kPa. It was found that the gas/solid equilibration kinetics for the polycrystalline CaTiO3 specimen in the above experimental conditions is determined by bulk diffusion rather than by grain boundary conditions. The obtained data of the electrical conductivity vs. time were used for the determination of the chemical diffusion coefficient as a function of temperature at low and high p(O2), respectively:
(1) 相似文献
9.
The glassy behavior of lead barium ytterbium tantalate relaxors has been investigated. The frequency dependence of the temperature, T′m (the temperature corresponding to the maximum value dielectric constant) is analyzed using Vogel-Fulcher relation and power law. The fitting parameters reveal that the power law explains the relaxation mechanism much better than the Vogel-Fulcher relation. The temperature dependence of dielectric constant at temperatures much higher and lower than T′m is analyzed by two exponential functions, which gives an idea about the production of polar clusters at high temperature and the distribution of freezing temperatures at lower temperature. 相似文献
10.
B. Shri Prakash 《Journal of Physics and Chemistry of Solids》2007,68(4):490-502
Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250 K, in addition to the well-investigated dielectric relaxation close to 100 K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers. 相似文献
11.
(1−x)NaNbO3-(x)ABO3 perovskite solid solutions belonging to group II according to the Krainik classification [Izv. Akad. Nauk SSSR, Ser. Phys. 28 (1964) 643] exhibit a dramatic diffusion of the dielectric permittivity ε′ maximum and relaxor-type behavior when the second component concentration exceeds a threshold value x0. The concentration phase transition to this relaxor-like phase is abrupt (of the first order kind) that is seen from the step in the dependence of the ε′(T) maximum temperature, Tm, on x. Some relaxor-like properties appear even at x<x0 in the course of cooling while disappear during the course of heating. Due to this fact and because of coupling of the antiferroelectric (AFE) and ferroelectric (FE) order parameters a giant (up to 100 K) temperature hysteresis of ε′(T) arises at AFE-AFE first order phase transition. The Tm values of all the known NaNbO3-ABO3 relaxor-type compositions are well below the room temperature and the dielectric permittivity maximal values, ε′m, are much lower than in the case of Pb-containing relaxors. However both Tm and ε′m values can be increased substantially by Li or K-doping leading to the formation of NaNbO3-ABO3-LiNbO3 (KNbO3) solid solutions. 相似文献
12.
Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics 下载免费PDF全文
A modified sol-gel method is used for synthesizing Nd ion doped
lead zirconate titanate nanopowders Pb1 - 3x/2NdxZr0.52Ti0.48O3 (PNZT) in an ethylene
glycol system with zirconium nitrate as zirconium source. The
results show that it is critical to add lead acetate after the
reaction of zirconium nitrate with tetrabutyl titanate in the
ethylene glycol system for preparing PNZT with an exact fraction of
titanium content. It has been observed that the dopant of excess Nd
ions can effectively improve the sintered densification and activity
of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric
properties of the PNZT ceramics are remarkably enhanced as compared
with those of monolithic lead zirconate titanate (PZT).
Especially, the supreme values of piezoelectric constant (d33)
and dielectric constant (\it ε) for the PNZT are both
about two times that of the monolithic PZT and moreover, the remnant
polarization (Pr) also increases by 30%. According to
the analysis of the structures and properties, we attribute the
improvement in electrical properties to the lead vacancies caused by
the doping of Nd ions. 相似文献
13.
Low-temperature property investigation of the lead indium-niobate-lead nickel-niobate solid solution
Edward F AlbertaAmar S Bhalla 《Journal of Physics and Chemistry of Solids》2002,63(9):1759-1769
The complex perovskite solid solution (1−x) Pb(In1/2Nb1/2)O3-(x) Pb(Ni1/3Nb2/3)O3 has been successfully prepared by the Columbite precursor method. The temperature dependencies of the dielectric constant and pyroelectric coefficient were measured between −261 and 200 °C. Relaxor ferroelectric behavior has been noticed in all compositions across the solid solution. The room-temperature electrostrictive coefficient, Q33, was 1.83×10−2 C2/m4 for x=0.10. No room-temperature piezoelectric activity was detected; however, upon cooling to −261 °C the maximum coupling coefficients kp=29%, kt=11%, and k33=31% were observed for the composition x=1.00. 相似文献
14.
This paper reports the observation of hexagonal phase of barium titanate by Mn doping and its effect on dielectric and magnetic properties. Ceramic samples of Ba0.98Zn0.02Ti1−xMnxO3 (where, x= 0.04, 0.06 and 0.08) were prepared by traditional solid-state reaction route. The hexagonal phase is stabilized in the composition Ba0.98Zn0.02Ti0.92Mn0.08O3 and a very feeble M–H loop is also observed in that composition. This induced magnetism is expected due to the exchange interactions between magnetic polarons formed by oxygen vacancies with Mn ions. The dielectric constant as well as the ferroelectric to paraelectric transition temperature is systematically decreased with increasing of Mn doping concentration. Further to that, the temperature dependent dielectric constant curve is also broadened at transition temperature with increasing of Mn concentration. However, the ferroelectric to paraelectric transition temperature is well above room temperature. 相似文献
15.
P. Priyadharsini A. Pradeep B. Sathyamoorthy G. Chandrasekaran 《Journal of Physics and Chemistry of Solids》2014
Room temperature multiferroic properties of BiFeO3 (BFO), Bi0.9La0.1FeO3 ((La)BFO) and Bi0.9La0.075Ce0.025FeO3 ((La,Ce)BFO) nanoparticles have been reported in this paper. XRD (X-ray diffraction) analyses of the nanoparticles show a decrease in the lattice constants and cell volume with the substitution of La and Ce. It is evident from the SEM (scanning electron microscope) micrographs that the (La,Ce) co-doped sample possesses dense microstructure made of smaller particles. Raman study accounts for the weakening of the strong hybridization between Bi-O by the substitution of La and Ce ions. This is also accompanied by an increase in the remanent magnetization, dielectric constant, and ferroelectric polarization. BFO nanoparticles show exchange bias effect under an applied magnetic field while the (La)BFO and (La,Ce)BFO samples show no trace of such effect. Ac-conductivity of (La,Ce) co-doped sample is observed to be several orders lesser in magnitude than bulk BFO ceramics. These results are interpreted by means of the subtle change in the structure, suppression of the spin cycloid and reduction of oxygen vacancies in the doped samples. 相似文献
16.
C. Karthik 《Journal of Physics and Chemistry of Solids》2006,67(12):2437-2441
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV. 相似文献
17.
Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics
The polycrystalline samples of Pb1−xSmx(Zr0.60Ti0.40)1−x/4O3 (PSZT) where x=0.00, 0.03, 0.06 and 0.09 were prepared by a high-temperature solid-state reaction technique. The preliminary structural analysis using X-ray diffraction (XRD) data collected at room temperature has confirmed the formation of single-phase compounds in tetragonal crystal system. The morphological study of each sample using scanning electron microscope (SEM) has revealed that the grains are uniformly distributed through out the surfaces of the samples. Using complex impedance spectroscopy (CIS) technique, the electrical impedance and modulus properties of the materials were studied in a wide range of temperatures at different frequencies. The impedance analysis indicates the presence of bulk resistive contributions in the materials which is found to decrease on increasing temperature. The nature of variation of resistances with temperature suggests a typical negative temperature coefficient of resistance (NTCR) type behavior of the materials. The complex modulus plots clearly exhibits the presence of grain boundaries along with the bulk contributions in the PSZT materials. The presence of non-Debye type of relaxation has been confirmed by the complex impedance analysis. The variation of dc conductivity (bulk) with temperature demonstrates that the compounds exhibit Arrhenius type of electrical conductivity. 相似文献
18.
A polycrystalline sample, KCa2V5O15, with tungsten bronze structure was prepared by a mixed-oxide method at low temperature (i.e., at 630 °C). A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound was studied by scanning electron microscopy (SEM). Two dielectric anomalies at 131 and 275 °C were observed in the temperature dependency of dielectric response at various frequencies, which may be attributed to the ferroelastic-ferroelectric and ferroelectric-paraelectric transitions, respectively. The nature of variation of the electrical conductivity, and value of activation energy of different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies). The impedance plots showed only bulk contributions, and non-Debye type of relaxation process occurs in the material. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers. 相似文献
19.
Jian Quan Qi Li Sun Wan Ping Chen You Guo Xu Ce Wen Nan 《Journal of Physics and Chemistry of Solids》2010,71(12):1676-1679
The formation mechanism of excess titanium in BaTiO3 nanoparticles is different from that in BaTiO3 bulk materials. In this study, we analyzed the concentration of excess titanium in BaTiO3 nanoparticles, which were directly synthesized from solution at 65 °C and it was found that it can reach an abnormal high concentration and keep the normal perovskite structure. The mechanism is discussed from the points of both defect chemistry and surface effect. The dielectric property of the ceramics fabricated from as-prepared nanoparticles with different concentration of excess titanium is also studied. 相似文献
20.
Svjetlana Sredi? Anne Spasjevic-de-Biré Marija Todorovi? Dušan Jovanovi? Polycarpos Pissis 《Journal of Physics and Chemistry of Solids》2008,69(8):1883-1890
Our previous experiences with incorporation of polyoxometalates (POMs) in different substrates have been very successful, because new nanocomposites with better conductive, catalytical and biochemical characteristics have been obtained. The results of intercalation of different mass% of ammonium decavanadate (ADV) in Al-pillared interlayered clays (Al-PILCs) are presented.The Al-PILCs were prepared using natural raw material, bentonite, containing a high percentage of montmorillonite (MM). Synthesis of ADV has been described in a previous paper. The structure of ADV hexahydrate was determined at low temperature, 100 K. A kappa refinement was performed to estimate the atomic charges.A sol-gel procedure was applied to obtain Al-PILCs composite intercalated with ADV hexahydrate (from 2 to 5 mass% of ADV). Structure and morphological properties of the new material, a nanocomposite of Al-PILCs-ADV, were investigated by X-ray powder diffraction (XRPD) and atomic force microscopy (AFM). To understand better how ADV is incorporated in the MM substrate, specific surface areas, pore structures and pore distributions were determined.Electrical and dielectric properties of the new materials were investigated by thermally stimulated depolarization currents (TSDCs) and broadband dielectric relaxation spectroscopy (DRS). The electrical conductivity of the nanocomposite was found to increase, in relation to MM, by intercalating with a small amount of ADV. 相似文献