首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have investigated the effect of the substitution of Gd for Pr on the crystal structure and magnetic properties of the Pr1−xGdxCo4B compounds for 0?x?1 using X-ray powder diffraction, magnetic measurements, and differential scanning calorimetry (DSC). These compounds have hexagonal CeCo4B-type structure with the space group P6/mmm. The substitution of Gd for Pr leads to a decrease of the unit-cell parameters a and the unit-cell volume V, while the unit-cell parameter c increases slightly. Magnetic measurements indicate that all samples are ordered magnetically below room temperature. The Curie temperatures determined by DSC technique increase as Pr is substituted by Gd. The saturation magnetization at 5 K decreases upon Gd substitution up to x=0.6, and then increases again.  相似文献   

2.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

3.
The influence of composition on the structural ordering and magnetism in the VxNb1+yS2 system has been investigated by X-ray diffraction and magnetic measurements. Stoichiometric V1/3NbS2 did not exhibit the structural ordering of vanadium between the NbS2 layers. In the ordered structure, the vanadium composition deviated from the ideal value of to both higher and lower values, while the niobium composition was in the range of 0.05?y?0.18. Excess niobium, y>0, is thought to play an essential role in the structural ordering in this system. For samples with excess niobium and ordered structures, a magnetic transition was observed at 20-50 K, depending on the composition. The spontaneous magnetization of 3-5×10−3 μB/V atom is thought to be intrinsic to this system. The magnetization curves consisted of a constant and a proportional parts of the magnetic field, which correspond to the spontaneous magnetization and high-field susceptibility, respectively. The magnetization curves and the temperature dependencies of the high-field susceptibility were quite similar to those of the canted antiferromagnetic NiS2. A correlation between the structural and magnetic ordering is suggested.  相似文献   

4.
The effects of substitution of Co for Fe on the magnetic and magnetocaloric properties of La0.8Ce0.2Fe11.4−xCoxSi1.6 (0, 0.2, 0.4, 0.6, 0.8 and 1.0) compounds have been investigated. X-ray diffraction shows that all compounds crystallize in the NaZn13-type structure. Magnetic measurements show that the Curie temperature (TC) can be tuned between 184 and 294 K by changing the Co content from 0 to 1. A field-induced methamagnetic transition occurs in samples with x=0, 0.2 and 0.4. The magnetic entropy changes of the compounds have been determined from the isothermal magnetization measurements by using the Maxwell relation.  相似文献   

5.
The TbFe6−xGa6+x compounds (x=0, 0.5, 1.0 and 1.45) have been prepared and studied by X-ray powder diffraction and magnetization measurements. The structure of the compound TbFe6−xGa6+x transfers from the orthorhombic ScFe6Ga6-type structure (space group Immm) (x=0 and 0.5) to the tetragonal ThMn12-type structure (space group I4/mmm) (x=1.0 and 1.5) and the volume of the unit cell increases as Ga content increases. The lattice parameters are a=0.85551, b=0.8626 and c=0.50717 nm for TbFe6Ga6, and a=0.86938 and c=0.50918 nm for TbFe4.55Ga7.45.The magnetization measurements indicate all the TbFe6−xGa6+x compounds have magnetic ordering. The Curie temperatures decrease from 492 K for TbFe6Ga6 to 327 K for TbFe4.55Ga7.45. The magnetization of the TbFe6−xGa6+x decreases with temperature decreases below its magnetic ordering temperature due to the increasing Tb-sublattice magnetization which is antiparallel to the Fe-sublattice magnetization.  相似文献   

6.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

7.
We have studied the effects of Co substitution for Mn on the structure and magnetic properties of the HoMn6−xCoxSn6 compounds (0?x?0.25) with HfFe6Ge6-type structure (space group P6/mmm) by X-ray powder diffraction and magnetization measurements. A monotonic decrease of the lattice parameters a and c is observed with increasing Co content. While the compounds with x=0 and 0.05 exhibit ferrimagnetism in the whole temperature range, the compounds with 0.1?x?0.15 show ferrimagnetism, helimagnetism and re-entrant ferrimagnetism with decreasing temperature. For the compounds with x=0 and 0.05, the spin reorientation temperature is observed. A metamagnetic transition from helimagnetic magnetic ordering to ferrimagnetism is observed for the compounds with x=0.1 and 0.2. The results are summarized in the HoMn6−xCoxSn6 magnetic phase diagram.  相似文献   

8.
Magnetic and specific heat measurements have been carried out on polycrystalline series of single-phase Dy1−xLaxNi2 (0?x?1) solid solutions. The compounds have a Laves-phase superstructure (space group F4¯3m) with the lattice parameter gradually increasing with decreasing Dy content. The samples with x?0.8 are ferromagnetic with the Curie temperature below 22 K. At high temperatures, all solid solutions are Curie-Weiss paramagnets. The Debye temperature, phonon and conduction electron contributions as well as a magnetic contribution to the heat capacity have been determined from specific heat measurements. The magnetocaloric effect was estimated from specific heat measurements performed in a magnetic field of 0.42 and 4.2 T.  相似文献   

9.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

10.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

11.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

12.
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones.  相似文献   

13.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

14.
The structural and magnetic properties of Mn substituted Ni0.50−xMnxZn0.50Fe2O4 (where x=0.00, 0.10 and 0.20) sintered at various temperatures have been investigated thoroughly. The lattice parameter, average grain size and initial permeability increase with Mn substitution. Both bulk density and initial permeability increase with increasing sintering temperature from 1250 to 1300 °C and above 1300 °C they decrease. The Ni0.30Mn0.20Zn0.50Fe2O4 sintered at 1300 °C shows the highest relative quality factor and highest initial permeability among the studied samples. The initial permeability strongly depends on average grain size and intragranular porosity. From the magnetization as a function of applied magnetic field, M(H), it is clear that at room temperature all samples are in ferrimagnetic state. The number of Bohr magneton, n(μB), and Neel temperature, TN, decrease with increasing Mn substitution. It is found that Mn substitution in Ni0.50−xMnxZn0.50Fe2O4 (where x=0.20) decreases the Neel temperature by 25% but increases the initial permeability by 76%. Possible explanation for the observed characteristics of microstructure, initial permeability, DC magnetization and Neel temperature of the studied samples are discussed.  相似文献   

15.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

16.
We report the observation of excellent hard magnetic properties on purely single phase ErCo7−xCux compounds with x=0.3, 0.5, 0.8 and 1. Cu substitution leads to a decrease in the saturation magnetization, but enhances the uniaxial anisotropy in this system. The large anisotropy field (∼100 kOe) is attributed to the Er and the Co sublattices. Domain wall pinning effect seems to play a crucial role in determining the temperature and field dependences of magnetization in these compounds. The hard magnetic properties obtained at room temperature (RT) are comparable to the best results obtained in other RCo7 based materials.  相似文献   

17.
The structural, dielectric and magnetic properties of single crystalline Ba1−xBixFe0.3Zr0.7O3−δ (x=0.0-0.29) thin films have been studied. The pseudotetragonal epitaxial thin films were obtained by pulsed laser-beam deposition (PLD) on (0 0 1) SrTiO3 (STO) single-crystal substrates. The Bi substitution for the Ba ions up to an extent of x=0.18 caused a slight improvement in the leakage current properties, as well as an enhancement of the apparent dielectric constant. The saturation magnetization of the films was significantly decreased following Bi substitution. These changes were thought to be related to the increase in oxygen deficiencies in the films. The effect of the Bi substitution on the dielectric and magnetic properties was analyzed in conjunction with the change in valence value of the Fe ions.  相似文献   

18.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

19.
The influence of cation substitution on the magnetic properties of single and polycrystals of FeCr2S4 spinel has been studied. The tetrahedral A-site substitution of the Fe by Cu in Fe1−xCuxCr2S4 was found to increase significantly the value of temperature Tm of the spin-glass like magnetization anomaly, whereas the octahedral B-site substitution of the Cr by In decreases Tm. This effect is suggested to result from a structural transformation influenced by variation of internal (chemical) pressure due to lattice contraction (Cu) or expansion (In). The observed reduced values of the Curie temperature for Cu-substituted single crystals compared to that of the polycrystalline samples are attributed to presence of Cl ions in samples detected by electron-probe microanalysis. The observed reduced value of saturation magnetization in the polycrystals compared to the single crystals is ascribed to the effect of surface anisotropy. Based on the experimental data the superexchange is concluded to be the dominant exchange interaction for 0≤x≤0.5 in Fe1−xCuxCr2S4, whereas the indirect exchange through the charge carriers is considered of minor importance.  相似文献   

20.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号