首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of La3+ doping at Ca2+ site in CaCu3Ti4O12 has been examined. Compositions with x=0.10, 0.20 and 0.30 were synthesized in the system Ca(1−3x/2)LaxCu3Ti4O12 by semi-wet method. Powder X-ray diffraction confirmed the formation of monophasic compounds. The structure remains cubic similar to CaCu3Ti4O12. Lattice parameter increases slightly with increasing La3+ concentration. Microstructure has been studied using scanning electron microscopy (SEM). Average grain size is in the range 2-4 μm for various compositions. Energy-dispersive spectrometer (EDS) studies confirm the stoichiometry of the synthesized materials. Dielectric constant, dielectric loss and conductivity of the samples decrease with increasing lanthanum concentrations.  相似文献   

2.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

3.
Lithium-ion batteries with both high power and high energy density are one of the promising power sources for electric devices, especially for electric vehicles (EV) and other portable electric devices. One of the challenges is to improve the safety and electrochemical performance of lithium ion batteries anode materials. Li4Ti5O12 has been accepted as a novel anode material of power lithium ion battery instead of carbon because it can release lithium ions repeatedly for recharging and quickly for high current. However, Li4Ti5O12 has an insulating character due to the electronic structure characterized by empty Ti 3d-states, and this might result in the insufficient applications of LTO at high current discharge rate before any materials modifications. This review focuses first on the present status of Li4Ti5O12 including the synthesized method, doping, surface modification, application and theoretical calculation, then on its near future development.  相似文献   

4.
Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250 K, in addition to the well-investigated dielectric relaxation close to 100 K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers.  相似文献   

5.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

6.
Ca4Mn3−xCrxO10 compounds were synthesized in order to investigate the role of an isoelectronic substitution in the layered manganite. Induced structural changes are mainly described as a distortion of the two types of octahedra in the n=3 RP structure. The results indicate that Cr3+ is not the only significant valence state for chromium ions. Electrical and magnetic characterization allow to conclude that chromium does not favour the double exchange mechanism in these compounds.  相似文献   

7.
Vanadium garnets NaPb2Co2V3O12 and NaPb2Ni2V3O12 have been successfully synthesized. The X-ray diffraction experiments indicate that these compounds have the garnet structure of cubic symmetry of space group with the lattice constant of 12.742 Å (NaPb2Co2V3O12) and 12.666 Å (NaPb2Ni2V3O12), respectively. The magnetic susceptibility of NaPb2Ni2V3O12 shows the Curie-Weiss paramagnetic behavior between 4.2 and 350 K. The effective magnetic moment μeff of NaPb2Ni2V3O12 is 3.14 μB due to Ni2+ ion at A-site and the Weiss constant is −3.67 K (antiferromagnetic sign). For NaPb2Co2V3O12, the simple Curie-Weiss law cannot be applicable. The ground state is the spin doublet and the first excited state is spin quartet , according to Tanabe-Sugano energy diagram on the basis of octahedral crystalline symmetry. This excited spin quartet state just a bit higher than ground state influences strongly the complex temperature dependence of magnetic susceptibility for NaPb2Co2V3O12.  相似文献   

8.
The dielectric properties of LiMn2O4, LiMn1.6Ti0.4O4 and LiMn1.5Ni0.5O4 powders, synthesized by sol-gel method, were determined by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectrum in a transmission electron microscope. From these data, the optical joint density of states (OJDS) was obtained by Kramers-Kronig analysis. Since maxima observed in the OJDS spectra are assigned to interband transitions above the Fermi level, these spectra can be interpreted on the basis of calculated density of states (DOS), carried out with the CASTEP code. Experimental and theoretical results are in good agreement.  相似文献   

9.
Spinel compounds Li4Ti5−xAlxO12/C (x=0, 0.05) were synthesized via solid state reaction in an Ar atmosphere, and the electrochemical properties were investigated by means of electronic conductivity, cyclic voltammetry, and charge-discharge tests at different discharge voltage ranges (0-2.5 V and 1-2.5 V). The results indicated that Al3+ doping of the compound did not affect the spinel structure but considerably improved the initial capacity and cycling performance, implying the spinel structure of Li4Ti5O12 was more stable when Ti4+ was substituted by Al3+, and Al3+ doping was beneficial to the reversible intercalation and deintercalation of Li+. Al3+ doping improved the reversible capacity and cycling performance effectively especially when it was discharged to 0 V.  相似文献   

10.
Manganese oxide (Mn3O4) nanoparticles with average diameter of 15 nm were prepared using alcohol solution of manganese chloride as starting material via a facile solution-combusting method. The flame core zone was chosen to prepare mono-dispersed and high crystalline products, which were employed to modify glassy carbon electrode and detect dopamine via cyclic voltammetry. The results exhibited excellent electrochemical sensitivity. A linear relationship between the concentration of dopamine and its oxidation peak current was obtained by differential pulse voltammetry, which will find wide application in the biological detection.  相似文献   

11.
Porous SnO2 nanoflakes with loose-packed structure were synthesized by calcination of SnS2 precursors that were obtained through solvothermal method at low temperature. The as-obtained SnO2 product had a three-dimensional porous structure with relatively high specific surface area. It was found that the SnO2 nanoflakes inherited the morphology of precursor while numerous pores were formed after the annealing process. The combined techniques of X-ray diffraction, energy-dispersive spectrum, field emission scanning electron microscopy, and (high-resolution) transmission electron microscopy were used for characterization of the as-prepared SnO2 product. Moreover, the porous SnO2 nanoflakes with loose-packed structure could be used as gas sensors for detecting ethanol and acted as anode for lithium ion batteries. Our study shows that the as-prepared SnO2 nanoflakes not only exhibit good response and reversibility to ethanol gas but also display enhanced Li-ion storage capability.  相似文献   

12.
Polycrystalline ceramic samples of Bi4−xLaxTi3O12 (x=0.0, 0.5 and 1) and Bi3.5La0.5Ti3−yNbyO12 (y=0.02 and 0.04) have been synthesized by standard high temperature solid state reaction method using high purity oxides and carbonates. The effect of lanthanum doping on Bi-site and Nb doping on Ti-site on the structural and electrical properties of Bi4Ti3O12 powders was investigated by X-ray diffraction, scanning electron microscopy, dc conductivity and dielectric studies. A better agreement between the observed and calculated X-ray diffraction pattern was obtained by performing the Rietveld refinement with a structural model using the non-centrosymmetric space group Fmmm in all the cases. A better agreement between observed and calculated d-values also shows that the lattice parameters calculated using the Rietveld refinement analysis are better. The increase in lanthanum and niobium contents does not lead to any secondary phases. It is found that La3+ doping reduces the material grain size and changes its morphology from the plate-like form to a spherical staking like form. The substitution of Nb for Ti ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The shape and size of the grains are strongly influenced by the addition of niobium to the system. The activation energies of all the compounds were calculated by measuring their dc electrical conductivities. The frequency and temperature dependent dielectric behavior of all the compounds have also been studied and the results are discussed in detail. The substitution of La and Nb on the Bi and Ti sites decreased the Tc and improved the dielectric and ferroelectric behavior.  相似文献   

13.
Cobalt hydroxide ultra fine nanowires were prepared by a facile hydrothermal route using hydrogen peroxide. This method provides a simple, low cost, and large-scale route to produce β-cobalt hydroxide nanowires with an average diameter of 5 nm and a length of ca. 10 μm, which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced highly uniform nanowires of cobalt oxide (Co3O4) under temperature 500 °C in the presence of oxygen gas. The produced cobalt oxide was characterized by X-ray diffraction, transmission electronic microscopy, and selected-area electron diffraction. The results indicated that cobalt oxide nanowires with an average diameter of 10 nm and a length of ca. 600 nm have been formed, which show a predominant well-crystalline cubic face-centered like phase.  相似文献   

14.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

15.
High-purity powder specimens of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 have been successfully synthesized by solid-state chemical reaction. The Rietveld refinements from X-ray powder diffraction data verified that these compounds have the garnet-type structure (space group , No. 230) with the lattice constant of a=12.596(2) Å for AgCa2Mn2V3O12 and a=12.876(2) Å for NaPb2Mn2V3O12. Calculation of the bond valence sum supported that Mn is divalent and V is pentavalent in these garnets. Estimation of the quadratic elongation and the bond angle variance showed that the distortions of the MnO6 octahedra and the VO4 tetrahedra are significantly suppressed. Our new results of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 are compared to those of AgCa2M2V3O12 and NaPb2M2V3O12 (M=Mg, Co, Ni, Zn).  相似文献   

16.
17.
The relations among the densification, microstructural evolution, and microwave dielectric properties of the (1−x)CaTiO3-xLaGaO3 ceramics with x=0.34 and 0.36 were investigated in this study. The results indicated that (1−x)CaTiO3−xLaGaO3 ceramics can be densified at 1300 °C with at least 97% of the theoretical value. The ceramics reported an orthorhombic perovskite structure, and no other detectable phases were found. Both εr and Q×f values can be improved by slowing the cooling rate during sintering. The εr and Q×f values of the 0.64CaTiO3-0.36LaGaO3 ceramics at cooling rates of >10 °C/min and 0.1 °C/min are 48.1 and 27,500 and 48.7 and 38,000, respectively. The higher densification obtained at a slower cooling rate plays an important role in improving the microwave dielectric properties.  相似文献   

18.
Spinel Li4Ti5O12/C powders were synthesized successfully by a simple rheological phase method using polyvinylbutyral (PVB) as both template and carbon source. The structure and morphology characteristics of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy and transmission electron microscopy. The XRD results showed that the composite had a good crystallinity. Its average particle size was about 2.1 μm with a narrow size distribution as a result of homogeneous mixing of the precursors. The in situ carbon coating produced by decomposition of PVB played an important role in improving electrical conductivity, thereby enhancing the rate capacity of Li4Ti5O12 as anode material in Li-ion batteries. The Li4Ti5O12/C composite, synthesized at 800 °C for 15 h under argon, containing 0.98 wt% of carbon, exhibited better electrochemical properties in comparison with the pristine Li4Ti5O12, which could be attributed to the enhanced electrical conductive network of the carbon coating on the particle surface.  相似文献   

19.
Ba0.6Sr0.4TiO3 ceramics were prepared by a citrate precursor method. The structure and nonlinear dielectric properties of the resulting ceramics were investigated within the sintering temperature range 1200-1300 °C. Adopting fine Ba0.6Sr0.4TiO3 powder derived from the citrate method was confirmed to be effective in reducing the sintering temperatures required for densification. The ceramic specimens sintered at 1230-1280 °C presented relative densities of around 95%. A significant influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric behavior among the specimens sintered at different temperatures was qualitatively interpreted in terms of the dielectric response of polar micro-regions under bias electric field. The specimens sintered at 1230 and 1250 °C attained superior nonlinear dielectric properties, showing relatively low dielectric losses (tan δ) of 0.24% and 0.22% at 10 kHz together with comparatively large figure of merits (FOM) of 121 and 142 at 10 kHz and 20 kV/cm, respectively.  相似文献   

20.
CaCu3Ti4O12 ceramics were prepared at the sintering temperatures ranged from 1025 to 1125 °C, and the dielectric characteristics were evaluated together with the microstructures. The giant dielectric constant with the maximum of 53,120 was obtained in CaCu3Ti4O12 ceramics at room temperature and 10 kHz, and strong processing and microstructure dependence of dielectric characteristics of the present ceramics was determined. The precipitation of the dispersed Cu-rich secondary phases of CuO and/or Cu2O and their network structure provided the extrinsic origins of the enhanced giant dielectric response, and the present findings would offer the greater potential for enhancing the giant dielectric constant and controlling the dielectric loss in CaCu3Ti4O12 ceramics by optimizing the microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号