首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.  相似文献   

2.
Raman scattering is used to observe pronounced electronic excitations around 230 meV--well above the two-phonon range--in the Mott insulators LaTiO3 and YTiO3. Based on the temperature, polarization, and photon energy dependence, the modes are identified as orbital excitations. The observed profiles bear a striking resemblance to magnetic Raman modes in the insulating parent compounds of the superconducting cuprates, indicating an unanticipated universality of the electronic excitations in transition metal oxides.  相似文献   

3.
We inspect the fundamental difference between the correlated band insulators (BI) and the Mott insulators (MI) from the perspective of the dynamical pair excitations. To this end, we investigated the physics of the two-plane Hubbard model by employing the well-tested dynamical mean field theory (DMFT) together with the quantum Monte Carlo (QMC) method. At half-filling our results clearly indicate that while the spectral weight of the pair excitation becomes minimal at MI which corresponds to a diminishing of the double occupancy, the opposite occurs at BI. We then discuss the effect of doping and find that the correlated band insulator and the Mott insulator robust at low doping concentration and the metallic state emerges at larger doping. The pair spectral function demonstrates that the metallic state of doped MI is strongly different from that of doped BI and it is readily reflected in the lineshape of the spectra. We discuss the implication of our results in the context of the two-particle spectroscopy.  相似文献   

4.
5.
We show that a two-dimensional (2D) array of 1D interacting boson tubes has a deconfinement transition between a 1D Mott insulator and a 3D superfluid for commensurate fillings and a dimensional crossover for the incommensurate case. We determine the phase diagram and excitations of this system and discuss the consequences for Bose condensates loaded in 2D optical lattices.  相似文献   

6.
We argue that aspects of the anomalous, low temperature, spin and charge dynamics of the high temperature superconductors can be understood by studying the corresponding physics of undoped Mott insulators. Such insulators display a quantum transition from a magnetically ordered Néel state to a confining paramagnet with a spin gap; the latter state has bond-centered charge order, a low energy S=1 spin exciton, confinement of S=1/2 spinons, and a free S=1/2 moment near non-magnetic impurities. We discuss how these characteristics, and the quantum phase transitions, evolve upon doping the insulator into a d-wave superconductor. This theoretical framework was used to make a number of predictions for STM measurements and for the phase diagram of the doped Mott insulator in an applied magnetic field.  相似文献   

7.
The vibrations of a collection of ions in a microtrap array can be described in terms of tunneling phonons. We show that the vibrational couplings may be tailored by using a gradient of the trap frequencies together with a periodic driving of the trapping potentials. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field. In particular, microtrap arrays are well suited to realize a quantum simulator of the famous Aharonov-Bohm effect and observe the paradigmatic edge states typical from quantum-Hall samples and topological insulators.  相似文献   

8.
We propose that an extension of the exciton concept to doped Mott insulators offers a fruitful insight into challenging issues of the copper oxide superconductors. In our extension, new fermionic excitations called cofermions emerge in conjunction to generalized excitons. The cofermions hybridize with conventional quasiparticles. Then a hybridization gap opens, and is identified as the pseudogap observed in the underdoped cuprates. The resultant Fermi-surface reconstruction naturally explains a number of unusual properties of the underdoped cuprates, such as the Fermi arc and/or pocket formation.  相似文献   

9.
The electron-phonon interaction in cuprates with c-axis polarised optical phonons, which is roughly one order of magnitude stronger than superexchange, bounds holes into mobile bipolarons. Bipolarons pin the chemical potential within the charge-transfer gap of doped Mott insulators, accounting for unusual kinetics and thermodynamics of doped cuprates such as the Nernst and giant proximity effects, pseudo-gaps, and normal-state diamagnetism. We propose that “quasi-particle” peaks, “Fermi-arcs”, and high-energy “waterfalls” in the photoemission spectra of cuprates originate from the photo-ionization matrix elements of disorder-localised band-tails in the charge-transfer gap.  相似文献   

10.
当考虑电子间的库伦排斥相互作用,以及电荷、自旋和轨道之间的相互耦合时,诸多超越 了近自由电子框架的新奇量子态涌现而出,如非常规超导态和量子自旋液体等。对这些新奇物态 的认知不仅会拓展现有的知识框架,也有望引发新一轮的量子科技革命。因此,对强关联物理的 研究是当下凝聚态物理领域的前沿课题。铜基高温超导体的母体是一种莫特绝缘体,在传统的能 带论之下被预言为金属态。然而电子间的强关联行为使得它表现出绝缘体的性质。由于莫特绝缘 体中库伦相互作用致使能隙打开并冻结其中的电荷自由度,所以在该体系中难以开展电输运性质 的测量研究。作为一种对于元激发(不仅包括电子,还包括磁振子、自旋子等)敏感的探针,热输 运测量在强关联电子系统的研究中发挥着重要的作用。本文回顾了近些年在非常规超导、重费米 子系统和量子自旋液体研究中一些有趣的纵向热输运性质的研究成果,并与我们近期发表的运用 横向热导率测量热霍尔现象的综述文章相互补充。   相似文献   

11.
We prove that there exists a class of crystalline insulators, which we call "fragile Mott insulators," which are not adiabatically connected to any sort of band insulator provided time-reversal and certain point-group symmetries are respected, but which are otherwise unspectacular in that they exhibit no topological order nor any form of fractionalized quasiparticles. Different fragile Mott insulators are characterized by different nontrivial one-dimensional representations of the crystal point group. We illustrate this new type of insulators with two examples: the d Mott insulator discovered in the checkerboard Hubbard model at half-filling and the Affleck-Kennedy-Lieb-Tasaki insulator on the square lattice.  相似文献   

12.
We study 1D trapped Bose gases in the strongly interacting regime. The systems are created in an optical lattice and are subject to a longitudinal periodic potential. Bragg spectroscopy enables us to investigate the excitation spectrum in different regimes. In the superfluid phase a broad continuum of excitations is observed which calls for an interpretation beyond the Bogoliubov spectrum taking into account the effect of strong interactions. In the Mott insulating phase a discrete spectrum is measured. Both phases are compared to the 3D situation and to the crossover regime from 1D to 3D. The coherence length and coherent fraction of the gas are measured in all configurations. We observe signatures for increased fluctuations characteristic for 1D systems. Moreover, the collective oscillations cease near the transition to the Mott insulator phase.  相似文献   

13.
Leon Balents 《Annals of Physics》2007,322(11):2635-2664
We present a general framework for describing the quantum phases obtained by doping paramagnetic Mott insulators on the square lattice. The undoped insulators are efficiently characterized by the projective transformations of various fields under the square lattice space group (the PSG). We show that the PSG also imposes powerful constraints on the doped system, and on the effective action for the vortex and Bogoliubov quasiparticle excitations of superconducting states. This action can also be extended across transitions to supersolid or insulating states at non-zero doping. For the case of a valence bond solid (VBS) insulator, we show that the doped system has the same PSG as that of elementary bosons with density equal to the density of electron Cooper pairs. We also discuss aspects of the action for a d-wave superconductor obtained by doping a “staggered-flux” spin liquid state.  相似文献   

14.
An analysis of Luttinger's theorem shows that – contrary to recent claims – it is not valid for a generic Mott insulator. For a two-orbital Hubbard model with two electrons per site the crossover from a non-magnetic correlated insulating phase (Mott or Kondo insulator) to a band insulator is investigated. Mott insulating phases are characterized by poles of the self-energy and corresponding zeros in the Greens functions defining a “Luttinger surface” which is absent for band insulators. Nevertheless, the ground states of such insulators with two electrons per unit cell are adiabatically connected.  相似文献   

15.
We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission and absorption of phonons. We point out a generic mechanism for D-A molecules, where the stimulated emission can dominate beyond a certain voltage due to the inverted position of the D and A quantum resonances. This leads to current-driven amplification (negative damping) of the phonons similar to laser action. We investigate the effect in realistic molecular rectifier structures using first-principles calculations.  相似文献   

16.
This paper surveys the physics of systems proximate to Mott insulators, and presents a classification using conventional and topological order parameters. This classification offers a valuable perspective on a variety of conducting correlated electron systems, from the cuprate superconductors to the heavy fermion compounds. Connections are drawn, and distinctions made, between collinear/non-collinear magnetic order, bond order, neutral spin 1/2 excitations in insulators, electron Fermi surfaces which violate Luttinger’s theorem, fractionalization of the electron, and the fractionalization of bosonic collective modes. Two distinct categories of Z2 gauge theories are used to describe the interplay of these orders. Experimental implications for the cuprates are briefly noted, but these appear in more detail in a companion review paper (S. Sachdev, cond-mat/0211005).  相似文献   

17.
Quasi-thermal-equilibrium states of electron-hole (e-h) systems in photoexcited insulators are studied from a theoretical viewpoint, stressing the exciton Bose-Einstein condensation (BEC), the e-h BCS-type pair-condensed state, and the exciton Mott transition between an insulating exciton/biexciton gas phase and a metallic e-h plasma phase. We determine the quasi-equilibrium phase diagram of the e-h system at zero and finite temperatures with applying the dynamical mean-field theory (DMFT) to the e-h Hubbard model with both repulsive and attractive on-site interactions. Effects of inter-site interactions on the exciton Mott transition are also clarified with applying the extended DMFT to the extended e-h Hubbard model.  相似文献   

18.
One of the outstanding contemporary challenges in condensed matter physics is to understand the dynamics of interacting quantum systems exposed to an external perturbation. We theoretically examine nonequilibrium photo dynamics and its interplay of charge, spin, and lattice degrees of freedom on a Hubbard-Holstein chain in one dimension and a t-J-Holstein square lattice in two dimensions. In the chain, performing dynamical density-matrix renormalization group calculations, we find that many phonons generated dynamically after photo irradiation in Mott insulators cause initial relaxation process. On the other hand, in the square lattice with model parameters as relevant for cuprates, a Lanczos-type exact diagonalization calculation shows that the majority of absorbed energy flows into spin subsystem rather than phonon subsystem.  相似文献   

19.
We study the phase diagram of a one-dimensional, two-component (i.e., pseudo-"spin"-(1/2)) ultracold atomic Fermi gas. The two atom species can have different hopping or mass. A very rich phase diagram for equal densities of the species is found, containing Mott insulators and superfluids. We also discuss coupling such 1D systems and the experimental signatures of the phases. In particular, we compute the spin-structure factor at small momentum, which should reveal a spin gap.  相似文献   

20.
In this Letter we study various spin correlated insulating states of F=2 cold atoms in optical lattices. We find that the effective spin exchange interaction due to virtual hopping contains an octopole coupling between two neighboring lattice sites. Depending on scattering lengths and numbers of particles per site the ground states are either rotationally invariant dimer or trimer Mott insulators or insulating states with various spin orders. Three spin-ordered insulating phases are ferromagnetic, cyclic, and nematic Mott insulators. We estimate the phase boundaries for states with different numbers of atoms per lattice site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号