首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report local density functional calculations using the full potential linear muffin-tin orbital (FP-LMTO) method for binary platinum nitride (PtN), in five different crystal structures, the rock salt (B1), zinc-blende (B3), wurtzite (B4), nickel arsenide (B8), and PbS (B10) phases. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtN in these phases are determined and compared with the other available experimental and theoretical works.Our calculations confirm in the B3 structure that PtN is found to be mechanically stable with a large bulk modulus B=232.45 GPa and at a sufficiently high pressure the B81 structure would be favoured.The theoretical transition pressure from zinc blende (B3) to NiAs (B81), zinc-blende (B3) to rock-salt (B1) and zinc-blende (B3) to PbO (B10) is determined to be 9.10 GPa, 9.85 GPa and 69.35 GPa, respectively. Our calculation shows also in five different structures for PtN a high bulk modulus is a good indicator of a hard material.  相似文献   

2.
Ab initio calculations based on the density functional theory within the full-potential linearized augmented plane wave method were carried out to investigate the structural stabilities of the different crystallographic phases, the pressure-induced phase transition and the electronic properties of the platinum carbide (PtC) compound. The zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO) and the tungsten carbide (WC) phases were considered. The exchange and correlation potential was treated by the generalized-gradient approximation using the Perde–Burke–Ernzerhof parameterization. The thermodynamic properties such as variation of the bulk modulus, lattice constant, heat capacity, thermal expansion and Debye temperature versus pressures and temperatures are investigated. The band structure results show the metallic character of the PtC compound in all the considered phases and the present study also shows that the PtC compound crystallizes in the ZB phase at ambient conditions. The theoretical transition pressures from the ZB to RS for the NiAs, PbO and CsCl transformations were also computed.  相似文献   

3.
Using the density-functional linear response method, we study the dynamical properties of ground state zinc-blende and high pressure NaCl phases of platinum carbide (PtC). The calculated phonon dispersion curve does not show any soft modes for all wave vectors, indicating the dynamic stability of the ground state zinc-blende phase. The high pressure rock-salt phase exhibits imaginary frequencies, practically along all directions of the Brillouin zone, which means that PtC cannot exist in the NaCl phase at least up to a high pressure of 100 GPa.  相似文献   

4.
The ground-state properties of ZnO in the rock-salt (B1), CsCl (B2), zinc-blende (B3), wurtzite (B4), cinnabar, cmcm, d-β-tin, NiAs, Immm, and Imm2 structures were investigated using an accurate first-principles total-energy calculations based on the full-potential augmented plane-wave plus local orbitals (APW+lo) method. The local density approximation was used for the exchange and correlation energy density functional. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative as well as the structural phase stability were calculated and compared to the available experimental data and previous theoretical works.  相似文献   

5.
We present in this paper the results of an ab initio theoretical study within the local density approximation (LDA) to determine in rock-salt (B1), cesium chloride (B2), zinc-blende (B3), and tungsten carbide (WC) type structures, the structural, elastic constants, hardness properties and high-pressure phase of the noble metal carbide of ruthenium carbide (RuC).The ground state properties such as the equilibrium lattice constant, elastic constant, the bulk modulus, its pressure derivative, and the hardness in the four phases are determined and compared with available theoretical data. Only for the three phases B1, B3, and WC, is the RuC mechanically stable, while in the B2 phase it is unstable, but in B3 RuC is the most energetically favourable phase with the bulk modulus 263 GPa, and at sufficiently high pressure (Pt=19.2 GPa) the tungsten carbide (WC) structure would be favoured, where ReC-WC is meta-stable.The highest bulk modulus values in the B3, B2, and WC structures and the hardnesses of H(B3)=36.94 GPa, H(B1)=25.21 GPa, and H(WC)=25.30 GPa indicate that the RuC compound is a superhard material in B3, and is not superhard in B1 and WC structures compared with the H(diamond)=96 GPa.  相似文献   

6.
王步升  刘永 《物理学报》2016,65(6):66101-066101
采用基于密度泛函理论的赝势投影缀加波方法, 对六种典型的二元晶体结构Rocksalt (RS), Cesiun-chloride (CC), Zinc-blende (ZB), Wurtzite (WZ), Iron-silicide (IS) 和Nickel-Arsenide (NA)的MnTe进行了计算研究. 通过比较六种结构的结合能, 确定了MnTe的基态结构是反铁磁的NA结构. 研究了这六种结构MnTe的电子结构、磁性, 并用Birch-Murnaghan状态方程拟合求得了各相结构的体弹性模量和相变压. 电子态密度表明, RS, CC和IS结构的MnTe为反铁磁导体, ZB, WZ和NA结构的MnTe均为反铁磁半导体.  相似文献   

7.
利用分子动力学方法和Buckingham经验势模型对重要半导体材料GaN立方闪锌矿相的晶格常数、相变压力(从闪锌矿到岩盐结构)、热膨胀、等温体模量、定压热容等结构和热力学特性在300—3000K的温度范围和0—65GPa的压力范围内进行了研究.研究表明,闪锌矿相GaN常态下的结构和热力学参数的模拟结果与实验数据及其他理论结果相符.同时在所选作用势模型可靠性检验的基础上,对等温体模量、定压热容诸非谐性参量在高温高压下的热力学行为进行了预测.所得结果在材料科学等领域的研究中具有一定的应用背景和参考价值. 关键词: GaN Buckingham势 分子动力学模拟 高温高压  相似文献   

8.
Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.  相似文献   

9.
We present the results of our calculations on Boron antimony (BSb) compound in zinc-blende (ZB) and rock-salt (RS) structures by performing ab initio calculations within the local density approximation (LDA). Some basic physical properties, such as lattice constant, bulk modulus, cohesive energy, phase transition pressure, second-order elastic constants (Cij), phonon frequencies, and some band structural parameters are calculated and compared with those obtained with other recent theoretical works. In order to further understand the behaviour of BSb compound, we have also predicted, the pressure-dependent behaviours of the band gap, second-order elastic constants (Cij), Young's modulus, poison ratios (ν), Anizotropy factor (A), sound velocities, and Debye temperature for this hypothetical compound.  相似文献   

10.
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.  相似文献   

11.
We report results of first-principles total-energy calculations for structural properties of the group I-VII silver iodide (AgI) semiconductor compound under pressure for B1 (rocksalt), B2 (cesium chloride), B3 (zinc-blende) and B4 (wurtzite) structures. Calculations have been performed using all-electron full-potential linearized augmented plane wave plus local orbitals FP-LAPW + lo method based on density-functional theory (DFT) and using generalised gradient approximation (GGA) for the purpose of exchange correlation energy functional. In agreement with experimental and earlier ab initio calculations, we find that the B3 phase is slightly lower in energy than the B4 phase, and it transforms to B1 structure at 4.19 GPa. Moreover, we found AgI has direct gap in B3 structure with a band gap of 1.378 eV and indirect band gap in B1 phase with a bandgap around 0.710 eV. We also present results of the effective masses for the electrons in the conduction band (CB) and the holes in the valence band (VB). To complete the fundamental characteristics of this compound we have analyzed their linear optical properties such as the dynamic dielectric function and energy loss function for a wide range of 0-25 eV.  相似文献   

12.
Ab initio calculations,based on norm-conserving nonlocal pseudopotentials and density functional theory(DFT),are performed to investigate the structural,elastic,dielectric,and vibrational properties of aluminum arsenide(AlAs) with a zinc-blende(B3) structure and a nickel arsenide(B81) structure under hydrostatic pressure.Firstly,the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures,which is in good agreement with previous theoretical results.Secondly,we find that the elastic constants,bulk modulus,static dielectric constants,and the optical phonon frequencies vary in a nearly linear manner under hydrostatic pressure.What is more,the softening mode of the transversal acoustic mode at the X point supports the phase transition in AlAs.  相似文献   

13.
A comprehensive first principles study of structural, elastic, electronic, and phonon properties of zirconium carbide (ZrC) is reported within the density functional theory scheme. The aim is to primarily focus on the vibrational properties of this transition metal carbide to understand the mechanism of phase transition. The ground state properties such as lattice constant, elastic constants, bulk modulus, shear modulus, electronic band structure, and phonon dispersion curves (PDC) of ZrC in rock-salt (RS) and high-pressure CsCl structures are determined. The pressure-dependent PDCs are also reported in NaCl phase. The phonon modes become softer and finally attain imaginary frequency with the increase of pressure. The lattice degree of freedom is used to explain the phase transition. Static calculations predict the RS to CsCl phase transition to occur at 308?GPa at 0?K. Dynamical calculations lower this pressure by about 40?GPa. The phonon density of states, electron–phonon interaction coefficient, and Eliashberg's function are also presented. The calculated electron–phonon coupling constant λ and superconducting transition temperature agree reasonably well with the available experimental data.  相似文献   

14.
A first-principles plane wave method with the ultrasoft pseudopotential scheme in the frame of the density functional theory (DFT) is performed to calculate the lattice parameters a and c, the bulk modulus B0 and its pressure derivative B0 of the zinc-blende GaAs (ZB-GaAs), rocksalt GaAs (RS-GaAs), CsCl-GaAs, NiAs- GaAs and wurtzite GaAs (WZ-GaAs). Our results are consistent with the available experimental data and other theoretical results. We also calculate the phase transition pressures among these different phases. The results are satisfactory.  相似文献   

15.
Ab initio calculations based on density functional theory using the full-potential linearized augmented plane wave method have been carried out to find the structural stability of different crystallographic phases, the pressure-induced phase transition and the electronic properties of the magnesium chalcogenides MgS, MgSe and MgTe. The zinc blende (B3), wurtzite (B4), rock salt (B1), CsCl (B2), NiAs (B8), β-BeO, 5-5 and TiP crystal structures are considered and the exchange and correlation potential is treated by the generalized-gradient approximation using the Perdew–Burke–Ernzerhof parameterization. Moreover, the modified Becke-Johnson (mBJ) scheme is also applied to optimize the corresponding potential for the band structure calculations. Results show that the wurtzite phase is the stable structure in the ground state adopted by MgSe and MgTe compounds while MgS adopts the rock-salt one. Moreover, the band structure calculations reveal a metallic behavior in the CsCl structure for all the compounds, whereas for the other structures, a semiconducting behavior is observed.  相似文献   

16.
The full-potential linear muffin-tin orbital method (FP-LMTO) within the local density approximation (LDA) is used to calculate the electronic band structures and the total energies of MgTe in its stable (NiAs-B8) and high pressure phases. The latter provide us with the ground state properties such us lattice parameter, bulk modulus and its pressure derivatives. The transition pressure at which this compound undergoes the structural phase transition from the NiAs to CsCl phase is calculated. The energy band gaps and their volume and pressure dependence in the stable NiAs-B8 phase are investigated. The ground state properties, the transition pressure are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NiAs and CsCl structure are also determined.  相似文献   

17.
G.Y. Gao  Z.L. Liu  Y. Min 《Physics letters. A》2008,372(9):1512-1515
In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine rock-salt compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates.  相似文献   

18.
A first-principles plane wave self-consistent method with the Ultrasoftpseudopotential scheme in the framework of density functional theory is performed to study the high pressure structural, electronic and vibrational properties of InX (X = N, P) for the zinc-blende (ZnS/B3), rock-salt (NaCl/B1) and cesium-chloride (CsCl/B2) phases. We also calculate the phase transition pressures among these different phases. Conclusions based on electronic energy band structure, phonon dispersion and phonon density of states at high pressure phases along phase transition regions are outlined.  相似文献   

19.
We have performed ab-initio self-consistent calculations using the full-potential linear augmented plane-wave method to investigate the structural and the electronic properties of the less known II-VI compounds: ZnPo, CdPo, and HgPo. Total energy calculations of the cubic zinc-blende, wurtzite, rocksalt, cesuim chloride, orthorhombic Cmcm, and tetragonal PbO phases are investigated. Ground state parameters are computed, and compared with available theoretical and experimental works. The zinc-blende structure is found to be the ground state phase of ZnPo and CdPo, while HgPo prefers the tetragonal PbO structure. The calculated band structure of II-Po shows features that differ considerably from those of typical II-VI semiconductors. In particular we found an inverted band gap, reflecting a semi-metallic character for these compounds.  相似文献   

20.
The full-potential band-structure scheme based on the linear combination of overlapping nonorthogonal local-orbital (FPLO) is used. The crystal potential and density are represented as a lattice sum of local overlapping nonspherical contributions. The energetic transitions of BN of zinc-blende and wurtzite structures are calculated using the band structure scheme. The energy gap at ambient pressure is found to be indirect for the two structures. The structural properties of two structures of BN are (obtained from the total energy calculations) and the total density of states are calculated. The phase transition parameter of BN is investigated. The ionicity character of BN has been calculated to test the validity of our recent models. The results are in reasonable agreement with experimental and other theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号