首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
7Li- and 51V-NMR have been measured to make clear the electronic state in a two-dimensional triangular lattice LiVS2. Knight shift of both 7Li- and 51V-NMR is almost independent of temperature below the phase transition temperature Tc of about 310 K from the paramagnetic state to non-magnetic state. The 51V- spin-lattice relaxation rate 1/T1 reveals an exponential temperature dependence below Tc, indicating a gap structure of electronic state. These results are consistent with a non-magnetic state with a trimer singlet of V3+ spins below Tc.  相似文献   

2.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

3.
Nuclear relaxation of 63Cu in the superconducting state of the Kondo-lattice system CeCu2Si2 has been studied with the use of the 63Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T1) decreases drastically just below Tc=0.67 K down to 0.5Tc without the apparent enchanced behavior and then is found to be almost temperature independent below 0.3Tc. These results suggest that the superconductivity in CeCu2Si2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tc down to 0.5Tc, while the temperature independence below 0.3Tc remains unexplained.  相似文献   

4.
The effects of hydrostatic pressure and substitution of Rb+for the ammonium cations on the ferroelectric phase transition temperature in NH4H(ClH2CCOO)2 have been studied by electric permittivity measurements. The transition temperature (Tc) decreases with increasing pressure up to 800 MPa and the pressure coefficient dTc/dp=−1.4×10−2 [K/MPa] has been experimentally determined. The substitution of Rb+ for the ammonium cations has been shown to considerably lower the ferroelectric phase transition temperature Tc. In mixed crystals, additional electric permittivity anomaly has been clearly evidenced. The results are discussed assuming a model, which combines polarizability effects, related to the heavy ion units, with the pseudo-spin tunnelling.  相似文献   

5.
We have investigated the molecular motions of TRIS+ ([(CH2OH)3CNH3]+) and ions in the [(CH2OH)3CNH3]2SiF6 crystal below room temperature from the measurements of the spin-lattice relaxation time T1 and the NMR absorption line of 1H and 19F nuclei, in order to elucidate the changes of the molecular motions by the phase transition of Tc=178 K. The narrowing of the 19F-NMR line was observed around Tc=178 K and the reorientation of the anion appears above Tc. Moreover, from the analysis of the temperature dependence of T1, we have observed that the activation energy of the reorientational motion of ions changes from 0.168 eV (T>Tc) to 0.185 eV (T<Tc). Based on these results, we found that the reorientational motion of ions is closely related to the origin of the phase transition at Tc. In addition, from the measurement of the 1H-NMR line, we also found that the reorientational motion of H2 in the -CH2OH group becomes active accompanied by the phase transition.  相似文献   

6.
We report the first inelastic neutron scattering measurements on the rhombohedrally stacked triangular antiferromagnet NaCrO2 which has recently been shown via μSR and NMR measurements to exhibit an unusually broad fluctuating cross-over regime extending far below the onset of spin freezing at Tc. Our results show that strong spin fluctuations persist far below Tc and that dispersive spin wave excitations only appear near the cross-over temperature 0.75Tc.  相似文献   

7.
The compound (Me4P)2ZnBr4, a member of the β-K2SO4 structure class, undergoes a phase transition at 84°C from the room temperature space group P121/c1 to the parent Pmcn structure. The room temperature structure corresponds to a ferrodistortive transition of B1g symmetry at the zone center. At room temperature, the compound has lattice constants a=9.501(1), b=16.055(2), c=13.127(2) Å and β=90.43(1)°. For the high temperature phase, the orthorhombic cell has dimensions a=9.466(2), b=16.351(3) and c=13.284(2) Å. The structures consist of two crystallographically independent Me4P+ cations and the ZnBr42− anions. In the room temperature phase, all three ionic species show substantial displacement from the mirror plane perpendicular to the a-axis that exists in the high temperature phase, as well as rotations out of that plane. The thermal parameters of the cations are indicative of substantial librational motion. Measurements of lattice parameters have been made at 2-5°C intervals over the temperature range 40-140°C. The changes in the lattice constants appear continuous at Tc (within experimental limits) indicating that the phase transition is likely second-order. The a lattice constant shows an anomalous shortening as Tc is approached. Thermal expansion coefficients are calculated from this data. An application of Landau theory is used to derive the temperature dependencies of spontaneous shear strain and corresponding elastic stiffness constants associated with the primary order parameter.  相似文献   

8.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

9.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

10.
The complex optical properties of the iron-chalcogenide superconductor FeTe0.55Se0.45 with Tc=14 K have been examined over a wide frequency range for light polarized in the Fe-Te(Se) planes above and below Tc. At room temperature the optical response may be described by a weakly interacting Fermi liquid; however, just above Tc this picture breaks down and the scattering rate takes on a linear frequency dependence. Below Tc there is evidence for two gap features in the optical conductivity at and . Less than 20% of the free carriers collapse into the condensate for T?Tc, and this material is observed to fall on the universal scaling line for a BCS dirty-limit superconductor in the weak-coupling limit.  相似文献   

11.
Crystal structure of Rb3D(SeO4)2 has been investigated at 25 K (below the transition temperature Tc=95.4 K) by single-crystal neutron diffraction. Accompanying the transition, the SeO4 groups, which are all equivalent in the phase above the transition (space group A2/a), split into eight nonequivalent groups in a superlattice (a×2b×2c, space group A2) in the low-temperature phase. Based on the D atom positions obtained, each of the SeO4 groups was identified to be in the state closer to a HSeO4 ion or to a SeO42− ion and the dipole arrangement of SeO4-D-SeO4 dimer was revealed. This dipole arrangement has ‘ferri’ structure along the polar b-axis, but ‘antiferro’ structure in the plane perpendicular to the b-axis. These results are consistent with the characteristics found in the earlier dielectric measurements.  相似文献   

12.
We present 27Al NMR studies for a single crystal of the Np-based superconductor NpPd5Al2. We have observed a five-line 27Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below Tc. The temperature dependence of the 27Al nuclear spin-lattice relaxation rate shows no coherence peak below Tc, indicating that NpPd5Al2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd5Al2.  相似文献   

13.
Bond covalency and valence of elements in HgBa2Can−1CunO2n+2+δ (n=1, 2, 3, 4) were calculated and their relationship with Tc was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest Tc sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher Tc. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.  相似文献   

14.
Raman spectroscopy studies are reported for the RuSr2Eu1.5Ce0.5Cu2O10 (Ru-1222) compound at various temperatures of 300, 250, 200 and 90 K. Three distinct vibrational bands: the first at 110, 140, and 160 cm−1, the second at 295 and 347 cm−1, and third one at 651 cm−1 are seen in Raman spectra of the compound at room temperature. These bands are attached to the Cu atoms’ c-direction, the Ru atoms’ ab-plane stretching and Ru atoms’ c-direction anti-stretching modes. Below 200 K, an extra vibrational mode is also seen at 260 cm−1. Also, with a decrease in temperature, though the Cu vibrational modes remain intact, the Ru atoms’ ab-plane stretching (295 cm−1) and c-direction anti-stretching (651 cm−1) modes shift gradually to higher wave number positions. The frequencies of modes at 260 and 651 cm−1 showed anomalous softening and line-width broadening below 100 K that corroborates well with the spin ordering seen in susceptibility studies. The studied compound is a ferromagnetic superconductor with magnetic ordering of the Ru spins at 200 K and superconductivity below 30 K. A magnetic and electrical transport characterization of the compound is also presented briefly.  相似文献   

15.
Porous magnesium diboride samples have been prepared by the heat treatment of a pressed mixture of Mg and MgB2 powders. It was found that linked superconducting structure is formed down to the minimum normalized density γc=d/d0≅0.16 (percolation threshold), where d is the density of MgB2 averaged over the sample, d0=2.62 g/cm3 is the X-ray density. Lattice parameters and critical temperature of the porous sample decrease with increasing porosity (decreasing γ) and Tc2≅32 K is minimal at γc. The grain boundaries in the porous samples are transparent for the current and Jc∼3×105 A/cm2 in self field at T=20 K in the samples with γ∼0.24.  相似文献   

16.
To investigate the effect of grain boundaries on paraconductivity of YBa2Cu3Ox, melt-textured and c-axis oriented thin films with controlled grain boundaries (superconducting transition width, ΔT, varying between 0.54 and 2.85 K) were prepared, and dc-conductivity has been measured as a function of temperature. In the logarithmic plots of excess-conductivity (Δσ) and reduced temperature (?), starting from low values of ?, we have observed three different regions namely critical region, mean field region and short wave fluctuation region. A correlation is observed between the range of critical region and ΔT, which is found to increase with ΔT. While for ΔT values smaller than 2.5 K only static critical region is observed, for higher ΔTs both static and dynamic critical regions are observed. In the mean field region a crossover from 3D to 2D was observed for all the samples. At ? values larger than 0.24, the excess-conductivity decreased sharply as ?−3, which suggested the existence of the short wave fluctuations.  相似文献   

17.
The temperature dependence of the frequency and intensity of the soft mode line appearing in the Raman spectra of Hg2Cl2, Hg2Br2 below the critical point Tc was studied. A proportionality between the scattering cross section of the soft mode and the square of its frequency vsm was established. A strong stress-induced increase of the intensity and frequency of the soft mode line was observed near Tc, the relative shift of vsm being ~30% at ~0.5 kg/mm2 stress and Tc?T=5°K.  相似文献   

18.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

19.
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρTM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σT1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity.  相似文献   

20.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号