共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many applications related to singly linearly constrained quadratic programs subjected to upper and lower bounds.
In this paper, a new algorithm based on secant approximation is provided for the case in which the Hessian matrix is diagonal
and positive definite. To deal with the general case where the Hessian is not diagonal, a new efficient projected gradient
algorithm is proposed. The basic features of the projected gradient algorithm are: 1) a new formula is used for the stepsize;
2) a recently-established adaptive non-monotone line search is incorporated; and 3) the optimal stepsize is determined by
quadratic interpolation if the non-monotone line search criterion fails to be satisfied. Numerical experiments on large-scale
random test problems and some medium-scale quadratic programs arising in the training of Support Vector Machines demonstrate
the usefulness of these algorithms.
This work was supported by the EPRSC in UK (no. GR/R87208/01) and the Chinese NSF grants (no. 10171104 and 40233029). 相似文献
2.
Jeff Linderoth 《Mathematical Programming》2005,103(2):251-282
We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally. 相似文献
3.
We present a new method of obtaining lower bounds for a class of quadratic 0, 1 programs that includes the quadratic assignment problem. The method generates a monotonic sequence of lower bounds and may be interpreted as a Lagrangean dual ascent procedure. We report on a computational comparison of our bounds with earlier work in [2] based on subgradient techniques. 相似文献
4.
The global minimization of large-scale concave quadratic problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. A linear underestimating function to the concave part of the objective is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and linear underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results are presented for problems with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained on a four processor CRAY2 using both sequential and parallel implementations of the algorithm. The average parallel solution time was approximately 15 seconds for problems with 400 linear variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computation time appears to increase only linearly with the number of linear variables. 相似文献
5.
This paper provides a canonical dual approach for minimizing a general quadratic function over a set of linear constraints. We first perturb the feasible domain by a quadratic constraint, and then solve a “restricted” canonical dual program of the perturbed problem at each iteration to generate a sequence of feasible solutions of the original problem. The generated sequence is proven to be convergent to a Karush-Kuhn-Tucker point with a strictly decreasing objective value. Some numerical results are provided to illustrate the proposed approach. 相似文献
6.
This paper establishes a simple necessary and sufficient condition for the stability of a linearly constrained convex quadratic program under perturbations of the linear part of the data, including the constraint matrix. It also establishes results on the continuity and differentiability of the optimal objective value of the program as a function of a parameter specifying the magnitude of the perturbation. The results established herein directly generalize well-known results on the stability of linear programs. 相似文献
7.
Faiz A. Al-Khayyal Christian Larsen Timothy Van Voorhis 《Journal of Global Optimization》1995,6(3):215-230
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489. 相似文献
8.
The mixed integer quadratic programming (MIQP) reformulation by Zheng, Sun, Li, and Cui (2012) for probabilistically constrained quadratic programs (PCQP) recently published in EJOR significantly dominates the standard MIQP formulation ( and ) which has been widely adopted in the literature. Stimulated by the dimensionality problem which Zheng et al. (2012) acknowledge themselves for their reformulations, we study further the characteristics of PCQP and develop new MIQP reformulations for PCQP with fewer variables and constraints. The results from numerical tests demonstrate that our reformulations clearly outperform the state-of-the-art MIQP in Zheng et al. (2012). 相似文献
9.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation. 相似文献
10.
This paper focuses on a singly linearly constrained class of convex quadratic programs with box-like constraints. We propose a new fast algorithm based on parametric approach and secant approximation method to solve this class of quadratic problems. We design efficient implementations for our proposed algorithm and compare its performance with two state-of-the-art standard solvers called Gurobi and Mosek. Numerical results on a variety of test problems demonstrate that our algorithm is able to efficiently solve the large-scale problems with the dimension up to fifty million and it substantially outperforms Gurobi and Mosek in terms of the running time. 相似文献
11.
12.
13.
In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. An algorithm, GOP, was presented for the solution of the problem through a series ofprimal andrelaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was proved to have finite convergence to an -global optimum. In this paper, new theoretical properties are presented that help to enhance the computational performance of the GOP algorithm applied to problems of special structure. The effect of the new properties is illustrated through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending problems from the literature. In addition, extensive computational experience is reported for randomly generated concave and indefinite quadratic programming problems of different sizes. The results show that the properties help to make the algorithm computationally efficient for fairly large problems. 相似文献
14.
Investigating a hybrid simulated annealing and local search algorithm for constrained optimization 总被引:1,自引:0,他引:1
Constrained Optimization Problems (COP) often take place in many practical applications such as kinematics, chemical process optimization, power systems and so on. These problems are challenging in terms of identifying feasible solutions when constraints are non-linear and non-convex. Therefore, finding the location of the global optimum in the non-convex COP is more difficult as compared to non-convex bound-constrained global optimization problems. This paper proposes a Hybrid Simulated Annealing method (HSA), for solving the general COP. HSA has features that address both feasibility and optimality issues and here, it is supported by a local search procedure, Feasible Sequential Quadratic Programming (FSQP). We develop two versions of HSA. The first version (HSAP) incorporates penalty methods for constraint handling and the second one (HSAD) eliminates the need for imposing penalties in the objective function by tracing feasible and infeasible solution sequences independently. Numerical experiments show that the second version is more reliable in the worst case performance. 相似文献
15.
Global optimization of a class of nonconvex quadratically constrained quadratic programming problems
Yong Xia 《数学学报(英文版)》2011,27(9):1803-1812
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations
of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint
is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem. 相似文献
16.
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature. 相似文献
17.
In this paper we propose a recursive quadratic programming algorithm for nonlinear programming problems with inequality constraints that uses as merit function a differentiable exact penalty function. The algorithm incorporates an automatic adjustment rule for the selection of the penalty parameter and makes use of an Armijo-type line search procedure that avoids the need to evaluate second order derivatives of the problem functions. We prove that the algorithm possesses global and superlinear convergence properties. Numerical results are reported. 相似文献
18.
In this paper we analyze conjugate gradient-type algorithms for solving convex quadratic programs subject only to box constraints (i.e., lower and upper bounds on the variables). Programs of this type, which we denote by BQP, play an important role in many optimization models and algorithms. We propose a new class of finite algorithms based on a nonfinite heuristic for solving a large, sparse BQP. The numerical results suggest that these algorithms are competitive with Dembo and Tulowitzski's (1983) CRGP algorithm in general, and perform better than CRGP for problems that have a low percentage of free variables at optimality, and for problems with only nonnegativity constraints. 相似文献
19.
This paper presents a characterization of the solutions of a singly constrained quadratic program. This characterization is then used in the development of a polynomially bounded algorithm for this class of problems. 相似文献
20.
In this paper, we consider the problem of minimizing an indefinite quadratic function subject to a single indefinite quadratic constraint. A key difficulty with this problem is its nonconvexity. Using Lagrange duality, we show that under a mild assumption, this problem can be solved by solving a linearly constrained convex univariate minimization problem. Finally, the superior efficiency of the new approach compared to the known semidefinite relaxation and a known approach from the literature is demonstrated by solving several randomly generated test problems. 相似文献