首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This research aimed to reduce the variability on the data obtained from differential scanning calorimetric (DSC) analysis of the isothermal crystallization kinetics of cocoa butter.

To enable transformation of the DSC crystallization peak to a sigmoid crystallization curve, the DSC peak area has to be integrated. Usually, the start and end points of the crystallization peak are determined visually. The result of this visual determination appeared to be very much dependent on the operator, but also differed considerably when the same operator performed the integration several times. By proposing an objective calculation algorithm to determine the start and end points of integration, the variability caused by the operator during the integration procedure could be eliminated. Furthermore, sample preparation and the DSC heating protocol to melt the sample prior to crystallization were studied. Three heating protocols (65 °C for 15 min, 65 °C for 30 min and 80 °C for 15 min) were compared and it was shown that holding at 65 °C for 15 min was sufficient to eliminate any influence of sample history. Two different sample preparation procedures were compared and it appeared that a change in sample preparation procedure had a significant influence on the measured crystallization process. It is thus important to keep this method constant to eliminate the variability caused by it.  相似文献   


4.
The cure kinetics of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) and 4,4′‐diaminodiphenylsulfone (DDS) as a cure agent in nanocomposites with multiwalled carbon nanotubes (MWNTs) have been studied with an isothermal differential scanning calorimetry (DSC) technique. The experimental data for both the neat TGDDM/DDS system and for epoxy/MWNTs nanocomposites showed an autocatalytic behavior. Kinetic analysis was performed with the phenomenological model of Kamal and a diffusion control function was introduced to describe the cure reaction in the later stage. Activation energies and kinetic parameters were determined by fitting experimental data. For MWNTs/epoxy nanocomposites, the initial reaction rates increased and the time to the maximum rate decreased with increasing MWNTs contents because of the acceleration effect of MWNTs. The values of the activation energies for the epoxy/MWNTs nanocomposites were lower than the values for the neat epoxy in the initial stage of the reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3701–3712, 2004  相似文献   

5.
Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, Cp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and Cp simply and accurately. These measurements are not affected by complex thermal histories.  相似文献   

6.
The nonisothermal crystallization kinetics was investigated by differential scanning calorimetry for the nylon 6/graphene composites prepared by in situ polymerization. The Avrami theory modified by Jeziorny, Ozawa equation, and Mo equation was used to describe the nonisothermal crystallization kinetics. The analysis based on the Avrami theory modified by Jeziorny shows that, at lower cooling rates (at 5, 10, and 20 K/min), the nylon 6/graphene composites have lower crystallization rate than pure nylon 6. However, at higher cooling rates (at 40 K/min), the nylon 6/graphene composites have higher crystallization rate than pure nylon 6. The values of Avrami exponent m and the cooling crystallization function F(T) from Ozawa plots indicate that the mode of the nucleation and growth at initial stage of the nonisothermal crystallization may be as follows: two‐dimensional (2D), then one‐dimensional (1D) for all samples at 5–10 °C/min; three‐dimensional (3D) or complicated than 3D, then 2D and 1D at 10–20 and 20–40 °C/min. The good linearity of the Mo plots indicated that the combined approach could successfully describe the crystallization processes of the nylon 6 and nylon 6/graphene composites. The activation energies (ΔE) of the nylon 6/graphene composites, determined by Kissinger method, were lower than those of pure nylon 6. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1381–1388, 2011  相似文献   

7.
Isothermal differential scanning calorimetry (DSC) was used to study the curing behavior of epoxy prepreg Hexply®1454 system, based on diglycidyl ether of bisphenol A (DEGBA)/dicyandiamid (DICY) reinforced by glass fiber. Cure kinetics of an autocatalytic‐type reaction were analyzed by general form of conversion‐dependent function. The characteristic feature of conversion‐dependent function was determined using a reduced‐plot method where the temperature‐dependent reaction rate constant was analytically separated from the isothermal data. An autocatalytic kinetic model was used; it can predict the overall kinetic behavior in the whole studied cure temperature range (115–130°C). The activation energy and pre‐exponential factor were determined as: E = 94.8 kJ/mol and A = 1.75 × 1010 sec?1 and reaction order as 2.11 (m + n = 0.65 + 1.46 = 2.11). A kinetic model based on these values was developed by which the prediction is in good agreement with experimental values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Kinetics of polyurethane formation between several polyols and isocyanates with dibutyltin dilaurate (DBTDL) as the curing catalyst, were studied in the bulk state by differential scanning calorimetry (DSC) using an improved method of interpretation. The molar enthalpy of urethane formation from secondary hydroxyl groups and aliphatic isocyanates is 72±3 kJ mol-1 and for aromatic isocyanates it is 55±2 kJ mol-1 . In the case of a single second order reaction for aliphatic isocyanates reaction, activation energy is 70±5 kJ mol-1 with oxypropylated polyols and 50±3 kJ mol-1 with Castor oil. For aromatic isocyanates and oxypropylated polyols the activation energy is higher around 77 kJ mol-1 . In the case of two parallel reactions (situation for IPDI and TDI 2-4) best fits are observed considering two different activation energies.  相似文献   

9.
Curing reactions of ethylene methyl acrylate (EMA) polydimethyl siloxane (PDMS) rubber blends have been investigated by differential scanning calorimetry (DSC) and by Rheometry. The curing exoterms obtained from DSC curves have been analysed to derive the kinetic parameters associated with the curing process. Crosslinking of EMA-PDMS rubber blends follow first order kinetics. The effect of blend ratio and peroxide concentration on the crosslinking characteristics of the blends have also been investigated. Department of Metallurgical Engineering  相似文献   

10.
Thermal analysis of the binary system KCl-LiCl in the composition range 0.368–0.812 mol fraction of LiCl was studied by differential scanning calorimetry (DSC). On the basis of the DSC curves, the experimental data for the phase-diagram, the latent heat of fusion, and the average specific heat in the liquid and solid states are presented as a function of the composition of the mixture. The experimental results compared with literature data. The following empirical correlation between the heat of fusion (H) and of compositions of the mixture in mol fraction of LiCl (x) was obtained: ·GH=26.95–50.20x+43.06x2 with a minimum value of 11.8 kJ(g mol)–1 at the eutectic point of 0.587 mol fraction of LiCl at 354.4°C. These results are required as basic data to develop thermal energy storage materials, based on the phase change of a molten mixture of KCl-LiCI.  相似文献   

11.
The crystallization kinetics of the high‐flow nylon 6 containing polyamidoamine (PAMAM) dendrimers units in nylon 6 matrix was investigated by differential scanning calorimetry. The Ozawa and Mo equations were used to describe the crystallization kinetics under nonisothermal condition. The values of Avrami exponent m and the cooling crystallization function F(T) were determined from the Ozawa plots, which showed bad linearity, and were divided into three sections depending on different cooling rates. The plots of the m and log F(T) values versus crystallization temperatures were obtained, which indicated that the actual crystallization mechanisms might change with the crystallization temperatures. The high‐flow nylon 6 has higher values of m and log F(T) than those of pure nylon 6, which implied that the high‐flow nylon 6 had more complicated crystallization mechanisms and slower crystallization rate than those of pure nylon 6. The good linearity of the Mo plots verified the success of this combined approach. The activation energies of the high‐flow nylon 6 ranged from 157 to 174 kJ/mol, which were determined by the Kissinger method. The ΔE values were lower than those of pure nylon 6, and the ΔE values were affected by both the generation and the content of PAMAM units in the nylon 6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2201–2211, 2008  相似文献   

12.
13.
In this study, the curing kinetics of polyfunctional benzoxazine resins based on arylamine, i.e. aniline and 3,5-xylidine, designated as BA-a and BA-35x, respectively, were investigated. Non-isothermal differential scanning calorimetry (DSC) at different heating rates is used to determine the kinetic parameters and the kinetic models of the curing processes of the arylamine-based polyfunctional benzoxazine resins were proposed. Kissinger, Ozawa, Friedman, and Flynn-Wall-Ozawa methods were utilized to determine the kinetic parameters of the curing reaction. BA-a resin shows only one dominant autocatalytic curing process with the average activation energy of 81-85 kJ mol−1, whereas BA-35x exhibits two dominant curing processes signified by the clear split of the curing exotherms. The average activation energies of low-temperature curing (reaction (1)) and high-temperature curing (reaction (2)) were found to be 81-87 and 111-113 kJ mol−1, respectively. The reaction (1) is found to be autocatalytic in nature, while the reaction (2) exhibits nth-order curing kinetics. In addition, the predicted curves from our kinetic models fit well with the non-isothermal DSC thermogram.  相似文献   

14.
A procedure is described to determine the limit of detection of DSC instruments by using tiny signals from spontaneous polymorphic transitions of CsCl, K2Cr2O7 and Na2SO4. It is shown how such signals can be found well-resolved in DSC diagrams of powder samples. To distinguish them from the baseline noise they should exhibit a height at least twice that of the baseline width. For the instrument employed the corresponding smallest amount of heat, i.e., the limit of detection, was found to be 0.1 mJ.The authors thank Mr. H. Maltry for technical help and the Deutsche Forschungsgemeinschaft for support.  相似文献   

15.
Differential scanning calorimetry was used to study the thermal decomposition of 2,4-dinitrophenylhydrazine (DNPH) in isothermal regime. The DSC curves were carried out at several constant temperatures lower than the melting temperature. The standard isoconversional analysis of the obtained curves suggests an autocatalytic decomposition mechanism. This mechanism is also supported by the temperature dependence of the observed induction periods.  相似文献   

16.
A technique of measurement of thermal conductivity of solid materials by differential scanning calorimetry is presented. It concerns small samples having a diameter less than 8.0 mm, a height less than 2.0 mm and a low thermal conductivity. This method requires many samples with different heights which are heated in such a way that a calibration substance put on their top undergoes a first-order phase transition. The analysis of heat transfer of a such experiment predicts that the slope of the differential power during the transition is proportional to the factor 2 and inversely proportional to the sum of the thermal resistances. A measurement of the thermal conductivity of samples made of polytetrafluoroethylene powder, compressed at the density of 2.10±0.03 g cm−3, has been performed; the value obtained is 0.33±0.02 W m−1 K−1. Measurements of thermal conductivity of small metal hydride pellets are also presented. The precision of the measurements are on average 10%.  相似文献   

17.
Differential scanning calorimetry has been investigated for its application to the experimental study of the temperature dependence of the kinetics of enzyme—substrate reactions. A reaction cell was developed which allows mixing of enzyme and substrate solutions directly in the calorimeter. The device was used to study the zero-order reaction of acetylcholinesterase with acetylcholine and the first-order reaction of α-chymotrypsin with N-acetyl-l-alanine methyl ester. The reaction cell is found to be satisfactory in the isothermal mode for both first- and zero-order reactions and in the scanning mode for the zero-order reactions but not for the first-order reaction. Limitations of the design are described for general enzyme kinetic studies.  相似文献   

18.
We report a new method of making empirical measurements of the sensitization of nitrocompounds by amines based on thermal analysis. The method is sensitive, accurate and reproducible. We have used this method to measure the sensitization of nitromethane, N-methyl-N-(2,4,6-trinitrophenyl) nitramine (tetryl), picric acid and trinitrotoluene (TNT) by a number of aliphatic amines.  相似文献   

19.
Correlations were determined between heat capacity and temperature and phase change enthalpy of Ba(OH)2·8H2O. The phase diagram and DSC curve of the binary system Na2CO3·10H2O?Na2HPO4·12H2O were determined The kinetics of the dehydrating reaction of Ba(OH)2·8H2O, Na2CO3·10H2O and Na2HPO4·12H2O were measured and theoretically analyzed by TG.  相似文献   

20.
A new method for determining the degree of conversion of gelation (gel) and gel time (t gel) at gel point using a single technology, DSC, is discussed in this work. Four kinds of thermoset resins are evaluated. It is found that the mutation points of reduced reaction rate (V r ) vs. reaction conversion () curves, corresponding with the changes of reaction mechanism, represents the gelation of the reaction. The at the mutation point is defined as gel. From isothermal DSC curves, the point at gel is defined ast gel. Traditional techniques (ASTM D3532 and DSC method) are also used to determine gel andt gel in order to demonstrate this new method. We have found that the results obtained from this new method are very consistent with the results obtained from traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号