首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction 2,4,8,10-Tetranitro-2,4,8,10-tetraazaspiro[5,5]udecane- 3,9-dione is a typical cyclourea nitramine (Figure 1). Its crystal density is 1.91 gcm-3. The detonation velocity according to =1.90 gcm-3 is about 8670 ms-1. Its sensitivity to impact is better than that of cyclotrimethy- lenetrinitramine. So it is the potential high explosive. Its preparation,1-3 properties,1-3 hydrolytic behavior4 and electronic structure3 have been reported. In the present work, we report its kinetic pa…  相似文献   

2.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

3.
N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The kinetic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1?α)1/3?1]?1, 203.75 kJ·mol?1 and 1017.95s?1, respectively. The values of ΔS , ΔH and ΔG of the reaction are 94.28 J·mol?1·K?1, 203.75 kJ·mol?1 and 155.75 kJ·mol?1, respectively.  相似文献   

4.
IntroductionCycloureanitramineswithN trinitroethylgroupshaveagreaterdensityandahigherdetonationvelocity .Someofthecompoundscouldbeusedashighexplosives .1,5 Dimethyl 2 ,6 bis(2 ,2 ,2 trinitroethyl)glycoluril (1)isatypicalcycloureanitramine .Thecrystaldensityis1 74g/…  相似文献   

5.
Introduction 2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo[3,3,1]nonan- 3,7-dione (1) is a novel energetic cyclourea nitramine containing four —NO2 groups (Figure 1). The detona-tion velocity corresponding to =1.93 gcm-3 is 9034 ms-1. It is the potential high explosive. Its preparation,1 properties1 and hydrolytic behavior2 have been reported. Thermal behavior is one of the most important aspects of the compound in practical application. However, its kinetic parameters of thermal decomposition…  相似文献   

6.
A new chelate (η5-C5H5)2Ti(SB)2, whereSB=O, N donor Schiff base salicylidene-4-methylaniline, was synthesized. The course of thermal degradation of the chelate was studied by thermogravimetric (TG) and differential thermal analysis (DTA) under dynamic conditions of temperature. The order of the thermal decomposition reaction and energy of activation was calculated from TG curve while from DTA curve the change in enthalpy was calculated. Evaluation of the kinetic parameters was performed by Coats-Redfern as well as Piloyan-Novikova methods which gaven=1, ΔH=1.114 kJ·mol?1, ΔE=27.01 kJ·mol?1, ΔS=?340.12 kJ·mol?1·K?1 andn=1, ΔH=1.114 kJ·mol?1, ΔE=20.01 kJ·mol?1, ΔS=?342.60 kJ·mol?1·K?1, respectively. The chelate was also characterized on the basis of different spectral studies viz. conductance, molecular weight, IR, UV-visible and1H NMR, which enabled to propose an octahedral structure to the chelate.  相似文献   

7.
A new compound, 2‐(dinitromethylene)‐1,3‐diazacyclopentane (DNDZ), was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,2‐diaminoethane in N‐methylpyrrolidone (NMP). Thermal decomposition of DNDZ was studied under non‐isothermal conditions by DSC, TG/DTG methods, and the enthalpy, apparent activation energy and pre‐exponential factor of the exothermic decomposition reaction were obtained as 317.13 kJ·mol?1, 269.7 kJ·mol?1 and 1024.51 s?1, respectively. The critical temperature of thermal explosion was 261.04°C. Specific heat capacity of DNDZ was determined with a micro‐DSC method and a theoretical calculation method, and the molar heat capacity was 205.41 J·mol?1·K?1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be a certain value between 263–289 s. DNDZ has higher thermal stability than FOX‐7.  相似文献   

8.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

9.
Introduction N-Guanylurea dinitramide (GUDN) is a new ener-getic oxidizer with higher energy and lower sensitivity. Its crystal density is 1.755 g·cm-3. The detonation velocity is about 8210 m·s-1. Its specific impulse and pressure exponent are 213.1 s and 0.73, respectively. It has the potential for possible use as an energy ingredient of propellants and explosives from the point of view of the above-mentioned high performance. Its preparation,1 properties2 and hygroscopocity2 have been …  相似文献   

10.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

11.
Thermal decomposition behavior and non‐isothermal decomposition reaction kinetics of nitrate ester plasticized polyether NEPE propellant containing ammonium dinitramide (ADN), which is one of the most important high energetic materials, were investigated by DSC, TG and DTG at 0.1 MPa. The results show that there are four exothermic peaks on DTG curves and four mass loss stages on TG curves at a heating rate of 2.5 K·min?1 under 0.1 MPa, and nitric ester evaporates and decomposes in the first stage, ADN decomposes in the second stage, nitrocellulose and cyclotrimethylenetrinitramine (RDX) decompose in the third stage, and ammonium perchlorate decomposes in the fourth stage. It was also found that the thermal decomposition processes of the NEPE propellant with ADN mainly have two mass loss stages with an increase in the heating rate, that is the result of the decomposition heats of the first two processes overlap each other and the mass content of ammonium perchlorate is very little which is not displayed in the fourth stage at the heating rate of 5, 10, and 20 K·min?1 probably. It was to be found that the exothermal peak temperatures increased with an increase in the heating rate. The reaction mechanism was random nucleation and then growth, and the process can be classified as chemical reaction. The kinetic equations of the main exothermal decomposition reaction can be expressed as: dα/dt=1012.77(3/2)(1?α)[?ln(1?α)]1/3 e?1.723×104/T. The critical temperatures of the thermal explosion (Tbe and Tbp) obtained from the onset temperature (Te) and the peak temperature (Tp) on the condition of β→0 are 461.41 and 458.02 K, respectively. Activation entropy (ΔS), activation enthalpy (ΔH), and Gibbs free energy (ΔG) of the decomposition reaction are ?7.02 J·mol?1·K?1, 126.19 kJ·mol?1, and 129.31 kJ·mol?1, respectively.  相似文献   

12.
The thermal behavior of Tb2 (p‐MBA)6(phen)2 (p‐MBA=p‐methylbenzoate; phen=1,10‐phenanthroline) in a static air atmosphere was investigated by TG‐DTG, SEM and IR techniques. The thermal decomposition of the Tb2(p‐MBA)6(phen)2 occurred in three consecutive stages at TP of 354, 457 and 595 °C. By Malek method, RO (n<1) was defined as kinetic model for the first‐step thermal decomposition. The activation energy (E) of this step is 170.21 kJ·mol‐1, the enthalpy of activation (ΔH) 164.98 kJ·mol‐1, the Gibbs free energy of activation (ΔG) 145.04 kJ·mol‐1, the entropy of activation (ΔS) 31.77 J·mol‐1·K‐1, and the pre‐exponential factor (A) 1015.21 s‐1.  相似文献   

13.
The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, ?atava-?esták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation (n = 1/3, n is the reaction order) with integral form G(α) = [?ln(1 ? α)]1/3 (α = 0.10–0.80). E a and logA [s?1] were determined to be 44.10 kJ mol?1 and 3.12, respectively. Moreover, the thermodynamics properties of ΔH , ΔS , and ΔG of this reaction were 38.18 kJ mol?1, ?199.76 J mol?1 K?1, and 164.36 kJ mol?1 in the stage of thermal decomposition.  相似文献   

14.
A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol?1, 1013.80 s?1; 108.0 kJ mol?1, 1023.23 s?1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being ?1464.55 ± 1.70 kJ mol?1 by a rotating-bomb calorimeter.  相似文献   

15.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

16.
The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature‐programmed mode have been investigated by means of DSC, TG‐DTG and lower rate Thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of the major exothermic decomposition reaction are 1‐a,207.98 kJ*mol?1 and 1015.64 s?1, respectively. The critical temperature of thermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as: dα/dT=1016.42 (1–α)e‐2.502×104/T As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4‐hydroxy‐3,5dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX‐CMDB propellant.  相似文献   

17.
L-脯氨酸独有的亚胺基使其在生物医药领域具有许多独特的功能,并广泛用作不对称有机化合物合成的有效催化剂。本文在碱性介质中研究了二(氢过碘酸)合银(III)配离子氧化 L-脯氨酸的反应。经质谱鉴定,脯氨酸氧化后的产物为脯氨酸脱羧生成的 γ-氨基丁酸盐;氧化反应对脯氨酸及Ag(III) 均为一级;二级速率常数 k′ 随 [IO4-] 浓度增加而减小,而与 [OHˉ] 的浓度几乎无关;推测反应机理应包括 [Ag(HIO6)2]5-与 [Ag(HIO6)(H2O)(OH)]2-之间的前期平衡,两种Ag(III)配离子均作为反应的活性组分,在速控步被完全去质子化的脯氨酸平行地还原,两速控步对应的活化参数为: k1 (25 oC)=1.87±0.04(mol·L-1)-1s-1,∆ H1=45±4 kJ · mol-1, ∆ S1=-90±13 J· K-1·mol-1 and k2 (25 oC) =3.2±0.5(mol·L-1)-1s-1, ∆ H2=34±2 kJ · mol-1, ∆ S2=-122 ±10 J· K-1·mol-1。本文第一次发现 [Ag(HIO6)2]5-配离子也具有氧化反应活性。  相似文献   

18.
The thermal behavior and thermal decomposition kinetic parameters of podophyllotoxin (1) and 4 derivatives, picropodophyllin (2), deoxypodophyllotoxin (3), fl-apopicropodophyllin (4), podophyllotoxone (5) in a temperature-programmed mode have been investigated by means of DSC and TG-DTG. The kinetic model functions in differential and integral forms of the thermal decomposition reactions mentioned above for first stage were established. The kinetic parameters of the apparent activation energy Ea and per-exponential factor A were obtained from analy- sis of the TG-DTG curves by integral and differential methods. The most probable kinetic model function of the decomposition reaction in differential form was (1- a)^2 for compounds 1-3,2/3·a^-1/2 for compound 4 and 1/2(1-a)·[-In(1-a)]^-1 for compound 5. The values of Ea indicated that the reactivity of compounds 1-5was increased in the order: 5〈4〈2〈1〈3. The values of the entropy of activation △S^≠, enthalpy of activation △H^≠ and free energy of activation △G^≠ of the reactions were estimated. The values of △G^≠ indicated that the thermal stability of compounds 1-3 with the samef(a) was increased in the order: 2〈3〈1.  相似文献   

19.
The thermal behavior of 4,6‐bis‐(5‐amino‐3‐nitro‐1,2,4‐triazol‐1‐yl)‐5‐nitropyrimidine (BANTNP) was studied under a non‐isothermal condition by DSC, PDSC and TG/DTG methods. The kinetic parameters (Ea and A) of the exothermic decomposition reaction are 304.52 kJ·mol?1 and 1024.47 s?1 at 0.1 MPa, 272.52 kJ·mol?1 and 1021.76 s?1 at 5.0 MPa, respectively. The kinetic equation at 0.1 MPa can be expressed as: dα/dT=1025.3(1?α)3/4exp(?3.8044×104/T)/β The critical temperature of thermal explosion is 588.28 K. The specific heat capacity of BANTNP was determined with a Micro‐DSC method, and the standard molar specific heat capacity is 397.54 J·mol?1·K?1 at 298.15 K. The adiabatic time‐to‐explosion of BANTNP was calculated to be 11.75 s.  相似文献   

20.
The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, ?atava-?esták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and logA[s?1] were determined to be 81.74 kJ mol?1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1–0.9). Moreover, thermodynamic properties of ΔH , ΔS , ΔG were 77.96 kJ mol?1, ?90.71 J mol?1 K?1, 119.41 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号