首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Three-step raising temperature process was employed to fabricate carbon nanotubes by pyrolysis of ferrocene/melamine mixtures on silica and single crystalline silicon wafers respectively. Then the morphologies, structures and compositions of obtained carbon nanotubes are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscope (EDX) and electron energy-loss spectroscopy (EELS). TEM and SEM observation shows that on silica substrate, high-oriented carbon nanotube can grow compactly to form continuous film on both frontal and cross-section surfaces, but on silicon substrate, only can form on cross-section surface. These carbon nanotubes have much irregular cup-like structure, and with outer diameter varying from 25 nm to 35 nm. At the top end of carbon nanotube there is a catalyst particle. EDX analysis reveals that the particle are iron cluster, and EELS spectrum indicates that the nanotube is composed of pure carbon. Finally, the effect of substrate surface roughness on the growth behavior of carbon nanotubes has been discussed.  相似文献   

2.
Sr0.51Ba0.48La0.01Nb2O6 (SBLN) thin films were prepared on platinized silicon substrates by pulsed laser deposition (PLD) combined with annealing technique. The preferred orientation, surface morphology, composition, and interfacial properties of the SBLN thin films were characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, and automatic spreading resistance measurement. The ferroelectric properties were confirmed by P - E hysteresis loops. The frequency variation of the dielectric constant was measured as well.  相似文献   

3.
 采用一种无模板的化学气相沉积法裂解金属有机物,以二茂铁为催化剂,二甲苯为碳源,利用单温炉加热装置在100 min内成功制备了2.7 mm超长定向碳纳米管阵列,生长速率高达27 μm·min-1。运用扫描电子显微镜、透射电子显微镜、拉曼光谱对定向碳纳米管阵列进行形貌观察和表征,结果表明:制得的碳纳米管阵列具有优越的定向性和管结构,并且石墨化程度高。给出了快速生长超长定向碳纳米管阵列的优化制备条件,结合表征结果讨论了碳纳米管阵列的生长机制,认为超长碳纳米管阵列采用的是一种催化剂固定不动的开口生长方式,碳源和催化剂的连续供应保证了超长碳纳米管阵列的快速生长。  相似文献   

4.
使用结构简单的单温炉设备,通过三步升温热解二茂铁、三聚氰氨混合物方法,在二氧化硅、多晶陶瓷基底上分别合成了碳纳米管阵列、碳纳米管捆束.使用扫描电子显微镜、透射电子显微镜、电子能量损失谱和x射线光电子能谱对合成样品进行了结构和成分分析.结果显示:两种基底上合成的纳米管均为多壁纯碳管;生长于光滑二氧化硅表面的碳纳米管具有高度取向性和一致的外径,长度为10—40μm.碳纳米管采取催化剂顶端生长模式并展示出类杯状形貌;生长于粗糙多晶陶瓷表面的碳纳米管捆束随机取向,碳纳米管直径为15—80nm,长度在几百微米,展示 关键词: 碳纳米管 热解法 三步升温工艺  相似文献   

5.
Aligned multi-walled carbon nanotubes (ACNTs) are deposited using copper (Cu) catalyst on Chromium (Cr)-coated substrate by plasma-enhanced chemical vapor deposition at temperature of 700 °C. Acetylene gas has been used as the carbon source while ammonia is used for diluting and etching. The thicknesses of Cu films on Cr-coated Si (100) substrates are controlled by deposition time of magnetron sputtering. The growth behaviors and quality of ACNTs are investigated by scanning electron microscopy (SEM) and transmission electron microscopy. The different performance of ACNTs on various Cu films is explained by referring to the graphitic order as detected by Raman spectroscopy. The results indicate that the ACNTs are formed in tip-growth model where Cu is used as a novel catalyst, and the thickness of Cu films is responsible to the diameter and quality of synthesized CNTs.  相似文献   

6.
Carbon nanotubes (CNTs) growth on Inconel sheets was carried out using hot filament chemical vapor deposition (HFCVD) in a gas mixture of methane and hydrogen. Scanning electron microscopy, transmission electron microscopy and field electron emission (FEE) measurement were applied to study the structure and FEE properties of the deposited CNTs. The effect of bias voltage and substrate surface roughness on the growth of vertically aligned carbon nanotubes was investigated. Well-aligned CNTs were synthesized by bias enhanced HFCVD. The results show that a bias of −500 V generates the best alignment. It has been observed that at the early growth stage, aligned and non-aligned CNTs are growing simultaneously on the unscratched sheets, whereas only aligned CNTs are growing on the scratched sheets. The results indicate that tip growth is not necessary for the electric field to align the CNTs, and larger catalyst particles created by scratching before the heat treatment can induce alignment of CNTs at the early growth stage. In addition, tree-like CNTs bundles grown on the scratched substrates exhibit better FEE performances than dense carbon nanotube forest grown on the unscratched substrates due to the reduced screen effect.  相似文献   

7.
Vertically aligned carbon nanofibers (CNF) and multiwalled carbon nanotubes (MWCN) have been synthesized from camphor by catalytic thermal CVD method on Co and Co/Fe thin films (for CNF) and on silicon substrates using a mixture of camphor and ferrocene (for MWCN). CNF and MWCN are studied by field emission scanning electron microscopy, high-resolution transmission electron microscopy, visible Raman spectroscopy, X-ray diffraction in order to get insight into the microstructure and morphology of these materials. Field electron emission study indicates turn-on field of about 2.56, 3.0 and 6.5 V/μm for MWCN, Co/CNF and Co/Fe/CNF films, respectively. The best performance of MWCN in field electron emission among the materials studied can be due to the highest aspect ratio, good graphitization and good density.  相似文献   

8.
The growth rate and terminal length of vertically aligned carbon nanotube arrays (VANTAs) grown by chemical vapor deposition have been dramatically improved through pulsed KrF excimer laser pretreatments of multilayer metal catalyst films. Silicon wafers coated with Al, Mo, and Fe layers were laser processed in air with single laser shots of varying fluence through circular apertures, then heated to ∼750°C and exposed to acetylene and ferrocene containing gas mixtures typically used to grow vertically aligned nanotube arrays. In situ videography was used to record the growth kinetics of the nanotube arrays in both patterned and unpatterned regions to understand the changes in catalytic activity, growth rates, and termination of growth. The height of the patterned regions varied with fluence, with the most successful treatment resulting in 1.4 cm tall posts of nanotubes embedded in a 0.4 cm tall nanotube carpet. High-resolution transmission electron microscopy images from the nanotubes in the posts revealed fewer walls, smaller diameters, and a much narrower distribution of diameters compared to the nanotubes grown in the carpet. This information, along with data obtained from weighing the material from each region, suggests that pulsed laser processing can also significantly increase the areal density of VANTAs. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy.  相似文献   

9.
Aligned carbon nanotube arrays (ACNTAs) with lengths up to 150 μm were fabricated on metallic alloy (Inconel 600) substrates by pyrolysis of iron (II) phthalocyanine (FePc) in the presence of ethylene (C2H4). The as-grown ACNTAs, formed by aligned multi-walled carbon nanotubes with high purity, were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy techniques. The ACNTAs were used directly as electrode materials in supercapacitors with (Et)4NBF4 + propylene carbonate (PC) as electrolyte, and their electrochemical properties were investigated. A rectangular-shaped cyclic voltammetry (CV) curve was observed even at a sweep rate of 1000 mV s−1. The specific capacitance measured at 1000 mV s−1 was about 57 % (47 F g−1) of that obtained at 1 mV s−1 (83 F g−1), and an equivalent series resistance (ESR) of 0.55 Ω was measured for the ACNTA and activated carbon pair electrodes embedded in a coin cell. The results indicated that the ACNTAs could be a promising candidate as electrode materials in supercapacitors.  相似文献   

10.
We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved.  相似文献   

11.
The growth of SmBa2Cu3O7-x superconducting thin films by off-axis pulsed laser deposition on different substrates (SrTiO3, MgO, LaAlO3, and YSZ) has been analyzed by means of resistance vs. temperature and X-ray diffraction measurements. The onset and width of the resistive transition depend on the substrate type and are in the ranges (89-80) K and (1-9) K, respectively. X-ray diffraction spectra show only the 00l reflections, from which the lattice parameter c can be estimated. Moreover, the rocking curves of the 005 peaks give an indication of the films' crystallinity and oxygen stoichiometry.  相似文献   

12.
The bending modulus of individual carbon nanotubes from aligned arrays grown by pyrolysis was measured by in situ electromechanical resonance in transmission electron microscopy (TEM). The bending modulus of nanotubes with point defects was approximately 30 GPa and that of nanotubes with volume defect was 2-3 GPa. The time-decay constant of nanotube resonance in a vacuum of 10(-4) Torr was approximately 85 micros. A femtogram nanobalance was demonstrated based on nanotube resonance; it has the potential for measuring the mass of chain-structured large molecules. The in situ TEM provides a powerful approach towards nanomechanics of fiberlike nanomaterials with well-characterized defect structures.  相似文献   

13.
Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO2, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.  相似文献   

14.
Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alq3 to PMMA is investigated. UVvisible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule.  相似文献   

15.
Pure and Au-doped mesostructured SnO2 thin films were successfully prepared by using non-ionic surfactant Brij-58 (polyoxyethylene acyl ether) as organic template and tin tetrachloride and hydrogen tetrachloroaurate(III) trihydrate as inorganic precursor. Thin films were deposited onto the glass substrates at 450 °C by simple spray pyrolysis technique. The novel mesostructured tin oxide thin films with different Au concentration exhibit highly selective response towards CO. The correlation of the Au incorporation in the mesostructure with particular morphology and gas sensing behavior is discussed using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET surface area and transmission electron microscopy (TEM) studies.  相似文献   

16.
Silver particles are dispersed on silicon by magnetron sputtering and post-annealing to investigate the catalytic effects of individual silver particles on wet etching of silicon surface. According to scanning electron microscopy, dispersed deep holes are present and the major etching direction is vertical to the surface of a Si(1 0 0) wafer or inclined to that on a Si(1 1 1) wafer. Our experiments indicate that the effect of the anisotropy of Si on directional etching is fundamental and the wafer resistivity and experimental process have important influence on the etching results. In addition, aggregation of silver particles and random horizontal etching on the surface of the wafer are caused by the local imbalance between the oxidant and HF. Our results enable better understanding of the catalytic effects of metal particles on silicon and are helpful to the preparation new silicon nanostructures.  相似文献   

17.
Highly oriented and vertically aligned single crystalline ZnO nanotubes were fabricated on Al2O3 (0001) substrates by plasma-molecular beam epitaxy without employing any external metal catalysts or templates. Field emission scanning electron microscope images indicate that the regularly aligned ZnO nanotubes with uniform size distribution were obtained. The chimney-like single crystal ZnO nanotube was confirmed by the transmission electron microscope and selected area electron diffraction pattern of the single nanotube. The formation mechanism of the nanotubes was also described briefly.  相似文献   

18.
Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 °C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.  相似文献   

19.
 采用射频反应溅射法在不同衬底上制备Zn3N2薄膜,然后对其原位氧化制备ZnO薄膜。利用X射线衍射分析(XRD)、扫描电子显微镜(SEM)和光致发光谱(PL)等表征技术研究了不同衬底对ZnO薄膜的结晶特性和发光性能的影响。XRD研究结果显示:Zn3N2薄膜在500 ℃原位氧化3 h后完全转变为ZnO薄膜,在玻璃和熔融石英衬底上制备的多晶ZnO薄膜无择优取向,而单晶硅(100)衬底上的多晶ZnO薄膜具有较好的沿(002)方向的择优取向。PL测试结果显示:硅和熔融石英衬底上的多晶ZnO薄膜发光性能良好,激子复合产生的紫外发光峰很强,且半高宽较窄,而来自于深能级发射的绿色发光峰很弱;而玻璃衬底上的多晶ZnO薄膜发光性能较差。  相似文献   

20.
Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12 h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号