首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The irradiation of ruthenium-sulfur dioxide complexes of general formula trans-[Ru(II)(NH(3))(4)(SO(2))X]Y with laser light at low temperature results in linkage isomerization of SO(2), starting with eta(1)-planar S-bound to eta(2)-side S,O-bound SO(2). The solid-state photoreaction proceeds with retention of sample crystallinity. Following work on trans-[Ru(NH(3))(4)Cl(eta(1)-SO(2))]Cl and trans-[Ru(NH(3))(4)(H(2)O)(eta(1)-SO2)](C(6)H(5)SO(3))(2) (Kovalevsky, A. Y.; Bagley, K. A.; Coppens, P. J. Am. Chem. Soc. 2002, 124, 9241-9248), we describe photocrystallographic, IR, DSC, and theoretical studies of trans-[Ru(II)(NH(3))(4)(SO(2))X]Y complexes with (X = Cl(-), H(2)O, or CF(3)COO(-) (TFA(-))) and a number of different counterions (Y = Cl(-), C(6)H(5)SO(3)(-), Tos(-), or TFA(-)). Low temperature IR experiments indicate the frequency of the asymmetric and symmetric stretching vibrations of the Ru-coordinated SO(2) to be downshifted by about 100 and 165 cm(-1), respectively. Variation of the trans-to-SO(2) ligand and the counterion increases the MS2 decay temperature from 230 K (trans-[Ru(II)(NH(3))(4)(SO(2))Cl]Cl) to 276 K (trans-[Ru(II)(NH(3))(4)(SO(2))(H(2)O)](Tos)(2)). The stability of the MS2 state correlates with increasing sigma-donating ability of the trans ligand and the size of the counterion. Quantum chemical DFT calculations indicate the existence of a third eta(1)-O-bound (MS1) isomer, the two metastable states being 0.1-0.6 eV above the energy of the ground-state complex.  相似文献   

2.
The tetraanilino phosphonium cation, [P(N(H)Ph)4]+, 1+, is sequentially deprotonated by Bu(n)Li in thf. The deprotonation reaction of the chloride derivative, Cl, was monitored by (31)P NMR, which revealed the successive formation of the neutral [P(N(H)Ph)3(NPh)], 2, the monoanionic [P(N(H)Ph)2(NPh)2]-, 3-, the dianionic [P(N(H)Ph)(NPh)3]2-, 4(2-), and finally the trianionic species [P(NPh)(4)](3-), (3-). Considering the isoelectronic relationship of oxo, =O, and imino groups, =NR, as well as hydroxy, -OH, and amino groups, -N(H)R, the neutral complex corresponds to phosphoric acid, H3PO4, whereas the anions 3-, 4(2-) and 5(3-) are analogues of dihydrogen phosphate, H2PO4-, monohydrogenphosphate, HPO4(2-), and orthophosphate ions, PO4(3-), respectively. Solid state structures were obtained of 1Cl, 2LiCl(thf)(2), 3Li(thf)(3.5), 3Li(2)Cl(thf)(4.25), 3Li(2)Cl(thf)(6) and 5Li(4)Cl(thf)(4). All systems provide two separate N-P-N chelation sites at opposite ligand faces, either consisting of the di(amino) arrangement P(NH)(2), acting as a double H-bond donor, the di(imino) arrangement PN(2), donating two electron pairs, or the mixed amino imino arrangement P(N)(NH), which supplies both electron pair and H-donor site. Interesting in this aspect is the mixed amino imino derivative 3- which has the ability to chelate a Lewis acid, such as a metal ion, at one face and a Lewis base, such as an anionic or neutral donor at the opposite ligand face. The formation of 1-D aggregates and the entrapment of lithium chloride are key characteristics of the supramolecular structures of the discussed complexes.  相似文献   

3.
New p-tert-butyl thiacalix[4]arenes differently substituted at the lower rim with amide, hydroxyl and ester groups were synthesized. Binding properties of the compounds toward some tetrabutylammonium salts n-Bu(4)NX (X = F(-), Cl(-), Br(-), I(-), CH(3)CO(2)(-), H(2)PO(4)(-), NO(3)(-)) were studied by UV spectroscopy. It was found that the stoichiometry of the complexes, generally, is 1 : 1, and the association constants are in the range of 10(3)-10(5) M(-1). The p-tert-butyl thiacalix[4]arenes containing secondary amide groups trisubstituted at the lower rim bind the studied anions most effectively. Selective receptors for fluoride and dihydrogen phosphate salts of tetrabutylammonium were found.  相似文献   

4.
Treatment of alkyl nitriles with NiX(2).6H(2)O (X = Cl, NO(3)) and 2-propanone oxime, followed by (X = Cl) addition of [i-Pr(4)N](NO(3)) for precipitation of the product, resulted in the formation of amidinium nitrates [RC([double bond]NH(2))NH(2)](NO(3)) (R = Me, Et, n-Pr). The reaction went to another direction with NiX(2).2H(2)O, i.e., the reaction between neat RCN (R = Me, Et, n-Pr, i-Pr, n-Bu, CH(2)Cl, CH(2)C(6)H(4)OMe-p) and NiCl(2).2H(2)O/2-propanone oxime (other ketoximes can also be used) gave the (imidoylamidine)Ni(II) complexes [Ni[N(H)[double bond]C(R)NHC(R)[double bond]NH](2)](2+) (1(2+)-7(2+)). The latter were isolated in good yields (65-91%) as the bis-chloride salts 1.Cl(2)-6.Cl(2) and the mixed salt 7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2)). Remarkably, the latter transformation does not proceed at all if NiCl(2).2H(2)O or the ketoxime are taken alone. Liberation of imidoylamidines was performed for one alkyl-containing complex [2.Cl(2)] and one benzyl-containing complex [7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2))], by (i) addition of HBF(4).Et(2)O to the acetonitrile solution of the complexes to yield [N(H)[double bond]C(R)NHC(R)[double bond]NH].2HBF(4) (R = Et 8 and R = CH(2)C(6)H(4)OMe-p 9) or (ii) substitution for ethanediamine (en) with following precipitation of the complex [Ni(en)(3)]Cl(2) with formation of free N(H)[double bond]C(R)NHC(R)[double bond]NH (R = Et 10 and R = CH(2)C(6)H(4)OMe-p 11). In contrast to the liberation in nonaqueous media, treatment of 2.Cl(2) and 7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2)) with Na(2)EDTA.2H(2)O in water-methanol solutions led to substitution and hydrolysis to furnish the acyl amides [EtC([double bond]O)](2)NH (12) and [p-MeOC(6)H(4)CH(2)C([double bond]O)](2)NH (13). Alternatively, 12 and 13 were obtained by hydrolysis of 10 and 11 in water at pH ca. 8.5. It was shown that the oxime complexes trans-[NiCl(2)(C(4)H(8)C[double bond]NOH)(4)] (14) or cis-[Ni(O,O-NO(3))(2)(C(4)H(8)C[double bond]NOH)(2)] (15) can be intermediates in the formation of amidines and imidoylamidines. The sequence of the Ni(II)/oxime mediated formation of (imidoylamidine)Ni complexes and liberation (or hydrolytic liberation) of the ligands opens up a novel, facile and environmentally benign route to imidoylamidines and acyl amides.  相似文献   

5.
The parent amido complex cis-(PMe(3))(4)Ru(H)(NH(2)) (2) has been prepared via the deprotonation of [cis-(PMe(3))(4)Ru(H)(NH(3))(+)][BPh(4)(-)]. The amido complex is a somewhat weaker base than the DMPE analogue trans-(DMPE)(2)Ru(H)(NH(2)) but is still basic enough to quantitatively deprotonate fluorene and reversibly deprotonate 1,3-cyclohexadiene and toluene. Complex 2 exhibits very labile phosphine ligands, two of which can be replaced by DMPE to yield the mixed complex cis-(PMe(3))(2)(DMPE)Ru(H)(NH(2)). Because of the ligand lability, 2 also undergoes hydrogenolysis and rapid exchange with labeled NH(3). The amide complex reacts with alkyl halides to yield E2 and S(N)2 products, along with ruthenium hydrido halide complexes including the ruthenium fluoride cis-(PMe(3))(4)Ru(H)(F). Ruthenium hydrido ammonia halide ion pair intermediates [cis-(PMe(3))(4)Ru(H)(NH(3))(+)][X(-)] are observed in some deprotonation and E2 reactions, and measurement of the equilibrium constants for NH(3) displacement from these complexes suggests that they benefit from significant hydrogen bonding between X(-) and NH(3) groups. Cumulenes also react with complex 2 to afford the products of insertion into an NH bond. The rates of neither these NH insertion reactions nor the reversible deprotonation reactions show any dependence on the concentration of PMe(3) present, suggesting that these reactions take place directly at the NH(2) group and do not involve precoordination of substrate to the metal center.  相似文献   

6.
The novel intramolecularly NH...O hydrogen-bonded Ca(II)-aryl sulfonate complex, [Ca2(SO3-2-t-BuCONHC6H4)2(H2O)4]n(2-t-BuCONHC6H4SO3)2n (1), sulfonate anion, (HNEt3)(SO3-2-t-BuCONHC6H4) (2a), (PPh4)(SO3-2-t-BuCONHC6H4) (2b), (n-Bu4N)(SO3-2-t-BuCONHC6H4) (2c), and sulfonic acid, 2-t-BuCONHC6H4SO3H (3), were synthesized. The structures of 1, 2a, and 2b depict the presence of the formation of NH...O hydrogen bonds between the amide NH and S-O oxygen for a series of compounds as determined by IR and 1H NMR analyses both in the solid state and in the solution state. Thus, the NH...O hydrogen bonds with neutral amide groups are available for investigation of the electronic state of the O- anion. The combined data from the IR and 1H NMR spectra indicate that the sulfonic acid, sulfonate anion, and Ca(II) complex have a substantially weak intramolecular NH...O hydrogen bond between the SO3 oxygen and amide NH. In the detailed comparison with the intense NH...O hydrogen bonds for the carboxylate, weak NH...O hydrogen bonds for sulfonate is due to the strong conjugation of the SO3- group with the lower nucleophilicity.  相似文献   

7.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

8.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

9.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

10.
In the reaction of organic monocationic chlorides or coordinatively saturated metal-ligand complex chlorides with linear, neutral Hg(CN)(2) building blocks, the Lewis-acidic Hg(CN)(2) moieties accept the chloride ligands to form mercury cyanide/chloride double salt anions that in several cases form infinite 1-D and 2-D arrays. Thus, [PPN][Hg(CN)(2)Cl].H(2)O (1), [(n)Bu(4)N][Hg(CN)(2)Cl].0.5 H(2)O (2), and [Ni(terpy)(2)][Hg(CN)(2)Cl](2) (4) contain [Hg(CN)(2)Cl](2)(2-) anionic dimers ([PPN]Cl = bis(triphenylphosphoranylidene)ammonium chloride, [(n)Bu(4)N]Cl = tetrabutylammonium chloride, terpy = 2,2':6',6' '-terpyridine). [Cu(en)(2)][Hg(CN)(2)Cl](2) (5) is composed of alternating 1-D chloride-bridged [Hg(CN)(2)Cl](n)(n-) ladders and cationic columns of [Cu(en)(2)](2+) (en = ethylenediamine). When [Co(en)(3)]Cl(3) is reacted with 3 equiv of Hg(CN)(2), 1-D [[Hg(CN)(2)](2)Cl](n)(n-) ribbons and [Hg(CN)(2)Cl(2)](2-) moieties are formed; both form hydrogen bonds to [Co(en)(3)](3+) cations, yielding [Co(en)(3)][Hg(CN)(2)Cl(2)][[Hg(CN)(2)](2)Cl] (6). In [Co(NH(3))(6)](2)[Hg(CN)(2)](5)Cl(6).2H(2)O (7), [Co(NH(3))(6)](3+) cations and water molecules are sandwiched between chloride-bridged 2-D anionic [[Hg(CN)(2)](5)Cl(6)](n)(6n-) layers, which contain square cavities. The presence (or absence), number, and profile of hydrogen bond donor sites of the transition metal amine ligands were observed to strongly influence the structural motif and dimensionality adopted by the anionic double salt complex anions, while cation shape and cation charge had little effect. (199)Hg chemical shift tensors and (1)J((13)C,(199)Hg) values measured in selected compounds reveal that the NMR properties are dominated by the Hg(CN)(2) moiety, with little influence from the chloride bonding characteristics. delta(iso)((13)CN) values in the isolated dimers are remarkably sensitive to the local geometry.  相似文献   

11.
The C-Cl bonds of ortho-chlorinated benzamides Cl-ortho-C(6)H(4)C(=O)NHR (R = Me (1), nBu (2), Ph (3), (4-Me)Ph (4) and (4-Cl)Ph (5)) were successfully activated by tetrakis(trimethylphosphine)nickel(0) and tetrakis(trimethylphosphine)cobalt(0). The four-coordinate nickel(II) chloride complexes trans-[(C(6)H(4)C([double bond, length as m-dash]O)NHR)Ni(PMe(3))(2)Cl] (R = Me (6), nBu (7), Ph (8) and (4-Me)Ph (9)) as C-Cl bond activation products were obtained without coordination of the amide groups. In the case of 2, the ionic penta-coordinate cobalt(II) chloride [(C(6)H(4)C(=O)NHnBu)Co(PMe(3))(3)]Cl (10) with the [C(phenyl), O(amide)]-chelate coordination as the C-Cl bond activation product was isolated. Under similar reaction conditions, for the benzamides 3-5, hexa-coordinate bis-chelate cobalt(III) complexes (C(6)H(4)C(=O)NHR)Co(Cl-ortho-C(6)H(4)C(=O)NR)(PMe(3))(2) (11-13) were obtained via the reaction with [Co(PMe(3))(4)]. Complexes 11-13 have both a five-membered [C,N]-coordinate chelate ring and a four-membered [N,O]-coordinate chelate ring with two trimethyphosphine ligands in the axial positions. Phosphonium salts [Me(3)P(+)-ortho-C(6)H(4)C(=O)NHR]Cl(-) (R = Ph (14) and (4-Me)Ph (15)) were isolated by reaction of complexes 8 and 9 as a starting material under 1 bar of CO at room temperature. The crystal and molecular structures of complexes 6, 7 and 9-12 were determined by single-crystal X-ray diffraction.  相似文献   

12.
The intermolecular interaction energies of the deprotonated hydrogen-bonded complexes F(-)(HF), F(-)(H(2)O), F(-)(NH(3)), Cl(-)(HF), SH(-)(HF), H(2)P(-)(HF), OH(-)(H(2)O), OH(-)(H(2)O)(2), OH(-)(NH(3)), Cl(-)(H(2)O), SH(-)(H(2)O), H(2)P(-)(H(2)O), Cl(-)(NH(3)), SH(-)(NH(3)), H(2)P(-)(NH(3)), Cl(-)(HCl), Cl(-)(H(2)S), Cl(-)(PH(3)), SH(-)(H(2)S), SH(-)(PH(3)), and H(2)P(-)(PH(3)) were calculated with correlation consistent basis sets at the MP2, MP4, QCISD(T), and CCSD(T) levels. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are closer to the complete basis set limit than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies obtained at the MP2/aug-cc-pVDZ level of theory are close to the interaction energies obtained at the extrapolated complete basis set limit in most of the complexes. Also, we investigate the accuracy of the other levels.  相似文献   

13.
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with Ru-N distances of 1.818(6) and 1.952(6) ?. The reaction between 1 and 3 at 25 °C in a toluene solution is first order in both complexes with a second-order rate constant determined to be (7.2 ± 0.4) × 10(-5) M(-1) s(-1).  相似文献   

14.
15.
The methylhydrazine complex [Ru(NH(2)NHMe)(PyP)(2)]Cl(BPh(4)) (PyP=1-[2-(diphenylphosphino)ethyl]pyrazole) was synthesised by addition of methylhydrazine to the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(BPh(4))(2). The methylhydrazine ligand of the ruthenium complex has two different binding modes: side-on (eta(2)-) when the complex is in the solid state and end-on (eta(1)-) when the complex is in solution. The solid-state structure of [Ru(PyP)(2)(NH(2)NHMe)]Cl(BPh(4)) was determined by X-ray crystallography. 2D NMR spectroscopic experiments with (15)N at natural abundance confirmed that in solution the methylhydrazine is bound to the metal centre by only the -NH(2) group and the ruthenium complex retains an octahedral conformation. Hydrazine complexes [RuCl(PyP)(2)(eta(1)-NH(2)NRR')]OSO(2)CF(3) (in which R=H, R'=Ph, R=R'=Me and NRR'=NC(5)H(10)) were formed in situ by the addition of phenylhydrazine, 1,1-dimethylhydrazine and N-aminopiperidine, respectively, to a solution of the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(OSO(2)CF(3))(2) in dichloromethane. These substituted hydrazine complexes of ruthenium were shown to exist in an equilibrium mixture with the bimetallic starting material.  相似文献   

16.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

17.
The compounds [Ni(en)(3)](2)[Re(6)Te(8)(CN)(6)].10H(2)O (1), [Ni(NH(3))(4)(en)](2)[Re(6)Te(8)(CN)(6)].2H(2)O (2), [Ni(NH(3))(2)(en)(2)][(Ni(en)(2))(3)(Re(4)Te(4)(CN)(12))(2)].38H(2)O (3), [Co(NH(3))(2)(en)(2)](2)[(Co(en)(2))Re(6)Te(8)(CN)(6)]Cl(2).H(2)O (4),and [(Zn(H(2)O)(en)(2))(Zn(en)(2))Re(6)Te(8)(CN)(6)].3H(2)O (5) (en = ethylenediamine) have been synthesized and characterized. Compounds 1, 4, and 5 have been synthesized by the diffusion of an aqueous (for 1 and 5) or an ammonia (for 4) solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O into a glycerol solution of NiCl(2).6H(2)O (for 1), CoCl(2).6H(2)O (for 4), or ZnCl(2) (for 5). Compounds 2 and 3 have been synthesized by the reaction of an aqueous solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O (for 2) or K(4)[Re(4)Te(4)(CN)(12)].5H(2)O (for 3) with an ammonia solution of Ni(en)(2)Cl(2). Compounds 1 and 2 are ionic whereas compounds 4 and 5 are one-dimensional polymers. Compound 3, a two-dimensional polymer, possesses hexagonal shaped channels of approximate diameter 10-12 A. Because the framework of compound 3 is robust, it is an attractive host for guest molecules of appropriate size and shape. The potential "guest" volume is about 37% of the unit cell volume.  相似文献   

18.
The rational synthesis of an octahedral coordination capsule in which the triangular faces are covered by single ligands is described herein. Starting with tris(2-hydroxybenzylidene)triaminoguanidinium chloride [H(6)L]Cl, we observed an oxidative cyclization of this ligand in the presence of PPh(4) (+) ions resulting in the complex [Pd(H(2)L')(PPh(3))] (1). The use of 5,5-diethylbarbiturate (bar(2-)) as a bridging ligand in the presence of [Co(en)(3)](3+) (en=ethylenediamine) leads to the formation of a rectangular box with the formula (Et(4)N)(6)[[Co[(PdCl)(Pd)L](2)(mu-bar)](2)] (2). The analysis of the architecture of compounds 1 and 2 enables the development of a self-assembly strategy for the synthesis of an octahedral coordination cage 3 with the formula Na(4)(Et(3)NH)(12)[(Pd(3)L)(8)[mu-(bar)](12)].x H(2)O. Compound 3 was characterized by (13)C-MAS-NMR spectroscopy and single-crystal structure analysis.  相似文献   

19.
In the reaction of the N-substituted diethanolamines (H(2)L(1-3)) (1-3) with calcium hydride followed by addition of iron(III) or indium(III) chloride, the iron wheels [Fe(6)Cl(6)(L(1))(6)] (4) and [Fe(6)Cl(6)(L(2))(6)] (6) or indium wheels [In(6)Cl(6)(L(1))(6)] (5), [In(6)Cl(6)(L(2))(6)] (8) and [In(6)Cl(6)(L(3))(6)] (9) were formed in excellent yields. Exchange of the chloride ions of 6 by thiocyanate ions afforded [Fe(6)(SCN)(6)(L(2))(6)] (7). Whereas the structures of 4, 5 and 7 were determined unequivocally by single-crystal X-ray analyses, complexes 8 and 9 were characterised by NMR spectroscopy. Contrary to what is normally presumed, the scaffolds of six-membered metallic wheels are not generally rigid, but rather undergo nondissociative topomerisation processes. This was shown by variable temperature (VT) (1)H NMR spectroscopy for the indium wheel [In(6)Cl(6)(L(1))(6)] (5) and is highlighted for the enantiotopomerisation of one indium centre [ 1/6[S(6)-5]<==>[1/6[S(6)-5']]. The self-assembly of metallic wheels, starting from diethanolamine dendrons, is an efficient strategy for the convergent synthesis of metallodendrimers.  相似文献   

20.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号