首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用一种特殊微波合成法,流变相辅助微波合成法,制备了结晶度好、纯度高的尖晶石相的锂离子电池正极材料LiAl0.03Mn1.97O4。对其进行了XRD分析和SEM研究,并就结构、形貌与传统固相法制备的LiMn2O4、LiAl0.03Mn1.97O4进行了比较。采用这种流变相辅助微波合成法制备的LiAl0.03Mn1.97O4具有优良的电化学性能,电化学性能测试表明,这种材料具有比较高的首次放电容量(115mAh/g)以及良好的可逆性、优异的循环性能,25次循环结束比容量几乎不变,保持在115mAh/g左右,衰减性得到很好的改善。  相似文献   

2.
以IANO_3、Ni(NO_3)_2·6H_2O、Mn(NO_3)_2和CO(NH_2)_2为原料,采用低温燃烧法成功合成了5V锂离子电池正极材料LINi_(0.5)Mn_(15)O_4.通过XRD、SEM、循环伏安和恒电流充放电实验对合成样品进行了表征.结果表明,在850℃合成的正极材料LiNi_(0.5)Mn_(1.5)O_4具有立方尖晶石结构,规则的八面体晶形,粒度适中,比较均匀.合成产物具有良好的电化学性能,其充放电电压平稳,放电平台高达4.7V,4V放电平台几乎消失;放电容量达到124.92mAh/g,50次循环后放电容量仍可达到120.84mAh/g.  相似文献   

3.
詹晖  周运鸿 《化学学报》2002,60(5):775-783
用一种新型的半固相法合成得到LiCo_xMn_(2-x)O_4材料,通过X射线衍射技术 和充放电实验对材料的结构及循环性能进行了研究。与传统的固相合成法相比,这 种半固相法显示了产物颗粒尺寸均匀,电化学性能良好的特点。通过对结构,组成 与电化学性能关系的探讨,对不同半固相法合成路线的选择及适当的优化,可得到 电化学性能良好的掺钴尖晶石材料,其中LiCo_(0.016)Mn_(1.984)O_4在室温下的 初始容量为118 mA·h/g,循环25周后,容量仍能保持在113 mA·h/g左右。通过这 种新型合成方法得到的掺钴尖晶石材料,在高温下也表现出了令人满意的充入电循 环性能。  相似文献   

4.
应用改进固相合成法制备亚微米Li4Ti5O12锂离子电池材料.X射线衍射(XRD)、扫描电镜(SEM)和激光粒度分析分别显示:物相单一且粒度均匀,D50为0.886μm,属于亚微米级材料.合适的粒度和分布使得该材料展示出优良的电化学性能,以其装配的半电池中,0.1C首次放电容量为165 mAh/g,5C时放电容量可达107 mAh/g,10C时仍可达到54 mAh/g.  相似文献   

5.
用一种新型的半固相法合成得到LiCo_xMn_(2-x)O_4材料,通过X射线衍射技术 和充放电实验对材料的结构及循环性能进行了研究。与传统的固相合成法相比,这 种半固相法显示了产物颗粒尺寸均匀,电化学性能良好的特点。通过对结构,组成 与电化学性能关系的探讨,对不同半固相法合成路线的选择及适当的优化,可得到 电化学性能良好的掺钴尖晶石材料,其中LiCo_(0.016)Mn_(1.984)O_4在室温下的 初始容量为118 mA·h/g,循环25周后,容量仍能保持在113 mA·h/g左右。通过这 种新型合成方法得到的掺钴尖晶石材料,在高温下也表现出了令人满意的充入电循 环性能。  相似文献   

6.
王恩通  杨林芳 《应用化学》2022,39(8):1209-1215
以LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)为研究对象,通过共沉淀法制备了不同F物质的量分数(0%、1%、3%、5%)的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)三元正极材料(NCM),通过对NCM材料的晶格结构、微观形貌、电化学性能进行分析,结果表明:F掺杂后提高了NCM材料的结晶度,降低了阳离子混乱程度,适量的F掺杂有助于减小NCM三元正极材料的尺寸和提高均匀性,F的掺杂还能够降低NCM三元正极材料的极化现象,初始放电比容量随着F的掺杂含量升高呈现出先升高后降低的趋势,循环性能随着F的掺杂得到了提高,F掺杂物质的量分数为3%的NCM三元正极材料初始放电比容量167.2 mA·h/g,容量保持率达到98.5%,阻抗较小,电化学性能最优。  相似文献   

7.
通过控制结晶法制备高密度类球形Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)(OH)_2前驱体,与LiOH·H_2O均匀混合后,在820℃于氧气气氛下进行高温煅烧,最终合成高压实富镍正极材料Li Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2。通过扫描电子显微镜(SEM)表征前驱体、正极材料及正极片的形貌;X射线衍射(XRD)表明材料具有良好的六方单相层状α-NaFeO_2结构,能谱仪(EDS)分析表明材料颗粒中各组分含量呈均匀分布。制备的LiNi_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2正极材料具有良好的加工性能和很高的压实密度,极片压实密度达到了3.82 g·cm~(-3)。以该极片组装的模拟电池具有良好的电化学性能,尤其具有优异的倍率性能,在电压区间2.8~4.3 V和0.2C电流密度充放电条件下,首次放电比容量为211.7 mAh·g~(-1),首次充放电效率88.9%,5C大倍率充放电条件下容量仍达到180.2 mAh·g~(-1),循环200周容量保持率为80.4%。  相似文献   

8.
采用水热法合成了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2作为锂离子电池的正极材料,采用X-射线衍射仪(XRD)、X-射线能谱仪(EDX)、扫描电子显微镜(SEM)对其进行了表征,通过循环伏安(CV)测试、阻抗测试(EIS)和充放电测试探究了其作为正极材料的电化学性能。结果表明:该材料表现出了良好的循环性能和倍率性能,在0.2C(1C=170 mA/g)的电流密度下,其容量为160 mAh/g以上,在0.5C下,首次放电容量为143 mAh/g以上,200个循环后容量仍然有121.5 mAh/g,容量保持率在84%以上。  相似文献   

9.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

10.
本文采用球磨微波法合成锂离子电池正极材料Li3V2(PO4)3/C,并研究了微波辐射时间对样品电化学性能的影响.结果表明,640 W微波辐射18 min合成的材料,结晶度高,粒径小而均匀.该电极5C倍率下首次放电比容量达101.3 mAh·g-1,300周期循环,其放电比容量仍保持100.8 mAh·g-1,展示出良好的应用前景.  相似文献   

11.
应用高温固相合成法制备L i[N i0.475Mn0.475Co0.05]O2.XRD,SEM,循环伏安及充放电容量测试表明,在800℃下煅烧合成的样品具有较高的嵌锂容量和良好的循环稳定性,如在20 mA/g和2.3~4.6 V的电压范围内,其首次放电比容量为178.8 mAh/g,循环30周后放电比容量仍能达到150.2 mAh/g,容量损失16.0%.  相似文献   

12.
应用低热固相合成法制备锂离子电池正极材料L iCo1/3N i1/3Mn1/3O2.研究该材料的结构与形貌,并比较它在商品L iPF6盐和在实验室合成的L iBOB(L iB(C2O4)2)盐电解液中的电化学性能.在L iPF6/EC+DMC+DEC电解液中,该材料表现出优良的电化学性能,其于0.5C、1C、1.5C、2C、3C放电倍率的初始比容量依次为167、163、163、157、147mAh/g,电池的循环性能也较好,说明低热固相合成的材料的有较好的高倍率性能.在L iBOB/EC+DEC+DE电解液中,0.5C倍率下比容量为160 mAh/g,较之L iPF6盐电解液的相差不大,但在高倍率下的比容量有所下降.  相似文献   

13.
以LiOH·H2O、Ni2O3、Co2O3、TiO2和Mg(OH)2为原料,应用固相反应法合成Co Ti Mg共掺杂的LiNiO2化合物LiNi0. 85Co0. 10 (TiMg)0. 025O2;TG DTA、XRD、SEM和电化学测试表明,该材料首次放电容量达182. 7mAh/g(3. 0~4. 3V, 18mA/g), 10次循环之后,容量还有 175. 5mAh/g,容量保持率为 96. 2%;与未掺杂的LiNiO2相比,该材料显示出良好的循环性能,是一种很有应用前景的锂电池正极材料.  相似文献   

14.
童庆松  杨勇  连锦明 《电化学》2005,11(4):435-439
以L iOH.H2O和Mn(CH3COO)2.2H2O作原料,应用微波-固相两段烧结法合成具有L i4Mn5O12结构特征,组成为L i3.22Na0.569Mn5.78O12.0的锂离子电池正极材料.XRD分析表明,在380℃的后处理温度下,微波烧结前处理有利于生成纯L i4Mn5O12尖晶石相.充放电实验表明,在4.5~2.5V电压区间,新制样品的初始放电容量为132 mAh.g-1,100循环的容量衰减率为6.8%;4个月存放样的初始放电容量为122 mAh.g-1,100循环的容量衰减率为17.4%.表现出较好的充放电性能和循环寿命.微波烧结使样品的Mn-O键被加强.  相似文献   

15.
金属并联电解制备LiCo_xNi_(1-x)O_2正极材料   总被引:1,自引:0,他引:1  
应用钴、镍金属并联电解法制备锂离子电池正极材料.电解反应时,调节流过钴、镍电极上的电流比值及控制合适的电流密度,可生成均匀的CoxNi1-x(OH)2前驱体.研究表明,该法简单且无污染.合成的LiCo0.3Ni0.7O2正极材料充放电的容量较高,循环稳定性也较好,其初始放电容量为163mAh/g,经过50次充放电循环后放电容量仍可保持140mAh/g.  相似文献   

16.
以一定比例的LiCl-LiNO_3为低熔点共混物,采用熔盐法合成了电化学性能良好的LiNi_(0.5)Mn_(1.5)O_4,XRD表征结果显示产物为单一尖晶石相,SEM表征显示出材料良好的晶形,充放电测试结果显示出材料在4.7V平台附近有较大的可逆容量,在4.1V平台附近仅有较少的可逆容量。文章讨论了影响产物晶形和性能的各种因素,建议通过退火、改变合成气氛来消除4.1V平台的产生;研究结果还显示,容量的损失主要发生在第一次放电过程中在高电位区时的电解液的氧化分解.建议通过更换适合在高电位条件下工作的电解液来克服此问题;同时,通过调整低熔点共混物的配比、气氛、反应时间等条件可以实现对产物的结晶形态和大小进行适当的控制,显示了该方法在制备LiNi_(0.5)Mn_(1.5)O_4材料中的应用前景.  相似文献   

17.
The Co_3O_4/Co_3V_2O_8/Ni nanocomposites were rationally designed and prepared by a two-step hydrothermal synthesis and subsequent annealing treatment. The one-dimensional(1D) Co_3O_4 nanowire arrays directly grew on Ni foam, whereas the 1D Co_3V_2O_8 nanowires adhered to parts of Co_3O_4 nanowires.Most of the hybrid nanowires were inlayed with each other, forming a 3D hybrid nanowires network.As a result, the discharge capacity of Co_3O_4/Co_3V_2O_8/Ni nanocomposites could reach 1201.8 mAh/g after100 cycles at 100 mA/g. After 600 cycles at 1 A/g, the discharge capacity was maintained at 828.1 mAh/g.Moreover, even though the charge/discharge rates were increased to 10 A/g, it rendered reversible capacity of 491.2 mAh/g. The superior electrochemical properties of nanocomposites were probably ascribed to their unique 3D architecture and the synergistic effects of two active materials. Therefore, such Co_3O_4/Co_3V_2O_8/Ni nanocomposites could potentially be used as anode materials for high-performance Li-ion batteries.  相似文献   

18.
The anode material cobalt disulfide for lithium-ion batteries was synthesized using the hydrothermal method at a lower temperature. The microstructure and surface morphology of the powders were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical tests showed that this sample had superior electrochemical properties. The first discharge capacity is up to 1313.9 mAh/g in the voltage range of 3.00–0.02 V at a current density of 50 mA/g. Adjusting the voltage range to 3.00–0.50 V, the first discharge capacity decreases, but the 20th discharge capacity is 435.5 mAh/g, which is better than what has been reported in the literature.  相似文献   

19.
李嵩  季世军  孙俊才 《电化学》2004,10(1):81-86
研究了AB2型Laves相贮氢电极合金ZrCr0.4Mn0.2V0.1Co0.1Ni1.2在不同温度下的放电容量、活化、高倍率和自放电等电化学性能.实验表明:25℃下,合金电极经13次循环后其最大放电容量为336mAh/g,在70℃下,仅需4次循环就达到298mAh/g;该合金在70℃,300mA/g电流下的高倍率放电性能比25℃时提高了约16%,但自放电性能却从3%/d下降到17%/d,虽然温度升高,合金的循环性能有所下降,但还是相当稳定的.这主要是因为循环过程中合金表面形成的氧化膜阻碍了合金元素进一步溶解造成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号