首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.  相似文献   

2.
The near-infrared photoluminescence of monolayer-protected Au38 and Au140 clusters (MPCs) is intensified with exchange of nonpolar ligands by more polar thiolate ligands. The effect is general and includes as more polar in-coming ligands: thiophenolates with a variety of p-substituents; alkanethiolates omega-terminated by alcohol, acid, or quaternary ammonium groups; and thio-amino acids. Remarkably, place exchanges of the initial phenylethanethiolates on Au38 MPCs by p-substituted thiophenolates and thio-amino acids and of hexanethiolates on Au140 MPCs by omega-quaternary ammonium terminated undecylthiolates result in increases in the near-infrared (NIR) luminescence intensities that are linear with the number of new polar ligands. The increased intensities are systematically larger for thiophenolate ligands having more electron-withdrawing substituents. Analogous effects on intensities are observed in the NIR emission of Au140 MPCs upon place exchange of alkanethiolates with thiolates having short connecting alkanethiolate chains to quaternary ammonium and to omega-carboxylic acid termini, and with oxidative charging of the Au cores. The observations are consistent with sensitivity of the luminescence mechanism to any factor that enhances the electronic polarization of the bonds between the Au core atoms and their thiolate ligands. The luminescence is discussed in terms of a surface electronic excitation, as opposed to a core volume excitation.  相似文献   

3.
This paper describes the effects of oxidative electronic charging of the Au cores of the monolayer-protected clusters (MPCs), Au140(S(CH2)5CH3)53 and Au38(SCH2CH2Ph)24, on nuclear magnetic resonance (NMR) spectra of their monolayer ligand shells. Previously unresolved fine structure in the 13C NMR hexanethiolate methyl and C5 methylene resonances is seen in spectra of solutions of monodisperse Au140(S(CH2)5CH3)53 MPCs, reflecting magnetically inequivalent ligand sites. Incremented increases in positive cluster core charge, effected by electrochemical charging, cause the spectral fine structure of the methyl resonance to coalesce, becoming a single peak at the Au140(3+) charge state. The spectral changes are reversible; charging back to the original core charge state regenerates the methyl 13C resonance fine structure. Adding an equimolar quantity of a Au(I) thiolate complex, Au(I)[SCH2(C6H4)C(CH3)3], to an uncharged Au140(S(CH2)5CH3)53 MPC solution in d2-methylene chloride causes partial spectral coalescence. 13C NMR spectra of Au38(SCH2CH2Ph)24 MPCs exhibit roughly comparable spectral changes upon positive core charging to the '0', '+1', and '+2' states. The NMR results indicate that exchange between magnetically inequivalent sites occurs at rates of 100 to 400 s(-1), a rate believed to be too fast to be accountable by actual exchanges of ligands between different sites on the Au core. We also describe changes in core electronic spectra of Au140(S(CH2)5CH3)53 induced by positive charging, measured using spectroelectrochemistry.  相似文献   

4.
This paper describes reactions in which ligands are exchanged and metals are transferred between monolayer-protected metal clusters (MPCs) that are in different phases (heterophase exchange) or are in the same phase. For example, contact of toluene solutions of alkanethiolate-coated gold MPCs with aqueous solutions of tiopronin-coated gold MPCs yields toluene-phase MPCs that have some tiopronin ligands and aqueous-phase MPCs that have some alkanethiolate ligands. In a second example, heterophase transfer reactions occur between toluene solutions of alkanethiolate-coated gold MPCs and aqueous solutions of tiopronin-coated silver MPCs, in which tiopronin ligands are transferred to the former and gold metal to the latter phase. These ligand and metal exchange reactions are inhibited when conducted under N(2). The results implicate participation of an oxidized form of Au (such as a Au(I) thiolate, Au(I)-SR) as both a ligand and metal carrier in the exchange reactions. Au(I)-SR is demonstrated to be an exchange catalyst.  相似文献   

5.
The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiple-scattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 +/- 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer.  相似文献   

6.
Intact molecular ions of the organothiolate-protected nanoparticle Au25(SCH2CH2Ph)18, including their isotopic resolution, can be observed at 7391 Da as 1- and 1+ ions in negative and positive mode, respectively, by MALDI-TOF mass spectrometry when using a tactic of threshold laser pulse intensities and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as matrix. Previous MALDI-TOF studies of Au nanoparticles using other matrices have encountered extensive fragmentation of nanoparticle as well as thiolate ligands. Absence of fragmentation enables precise determination of the distribution of mixed monolayer compositions on nanoparticles prepared by ligand exchange reactions and by synthesis using thiol mixtures. Reaction conditions producing mixed monolayers containing only one or a small number of usefully functional ligands can be readily identified. At increased laser pulse intensity, the first fragmentation step(s) for the Au25(SCH 2CH2Ph)18 nanoparticle results in losses of AuL units and, in particular, loss of Au4(SCH2CH2Ph)4.  相似文献   

7.
This paper compares the kinetics of exchanges of phenylethanethiolate ligands (PhC2S-) of the monolayer-protected clusters (MPCs) Au(38)(SC2Ph)(24) and Au(140)(SC2Ph)(53) with p-substituted arylthiols (p-X-PhSH), where X = NO(2), Br, CH(3), OCH(3), and OH. First-order rate constants at 293 K for exchange of the first ca. 25% of the ligands on the molecule-like Au(38)(SC2Ph)(24) MPC, measured using (1)H NMR, vary linearly with the in-coming arythiol concentration; ligand exchange is an overall second-order reaction. Remarkably, the second-order rate constants for ligand exchange on Au(38)(SC2Ph)(24) are very close to those of corresponding exchange reactions on the larger nanoparticle Au(140)(SC2Ph)(53) MPCs. These are the first results that quantitatively show that the chemical reactivity of different sized nanocrystals is almost independent of size; presumably, this is because the locus of the initial ligand exchanges is a common kind of site, thought to be the nanocrystal vertexes. The rates of later stages of exchange (beyond ca. 25%) differ for Au(38) and Au(140) cores, the latter being much slower presumably due to its larger terrace-like surface atom content. The reverse exchange reaction was studied for Au(38)(p-X-arylthiolate)(24) MPCs (X = NO(2), Br, and CH(3)), where the in-coming ligand is now phenylethanethiol. Remarkably, the rate constants of both forward and reverse exchanges display identical substituent effects, which implies a concurrent bonding of both in-coming and leaving ligands to the Au core in the rate-determining step, as in an associative mechanism. X = NO(2) gives the fastest rates, and the ratio of forward and reverse rate constants gives an equilibrium constant of K(EQ,PE) = 4.0 that is independent of X.  相似文献   

8.
The kinetics of exchange ofphenylethanethiolate ligands (PhC2S) of monolayer-protected clusters (MPCs, average formula Au140(PhC2S)53) by para-substituted arylthiols (p-X-ArSH) are described. 1H NMR measurements of thiol concentrations show that the exchange reaction is initially rapid and gradually slows almost to a standstill. The most labile ligands, exchanging at the shortest reaction times, are thought to be those at defect sites (edges, vertexes) on the nanoparticle core surface. The pseudo-first-order rate constants derived from the first 10% of the exchange reaction profile vary linearly with in-coming arylthiol concentration, meaning that the labile ligands exchange in a second-order process, which is consistent with ligand exchange being an associative process. A linear Hammett relationship with slope p = 0.44 demonstrates a substituent effect in the ligand place exchange reaction, in which the bimolecular rate constants increase for ligands with electron-withdrawing substituents (1.4 x 10-2 and 3.8 x 10(-3) M(-1) s(-1) for X = NO2 and 4-OH, respectively). This is interpreted as the more polar Au-S bonds at the defect sites favoring bonding with more electron deficient sulfur moieties. At longer reaction times, where ligands exchange on nondefect (terrace) as well as defect sites, the extent of ligand exchange is higher for thiols with more electron-donating substituents. The difference between short-time kinetics and longer-time pseudoequilibria is rationalized based on differences in Au-S bonding at defect vs nondefect MPC core sites. The study adds substance to the mechanisms of exchange of protecting ligands on nanoparticles. The scope and limitations of 1H NMR spectroscopy for determining rate data are also discussed.  相似文献   

9.
A synthesis strategy to obtain monodisperse hexanethiolate-protected Au38 clusters based on their resistance to etching upon exposure to a hyperexcess of thiol is reported. The reduction time in the standard Brust-Schiffrin two-phase synthesis was optimized such that Au38 were the only clusters that were fully passivated by the thiol monolayer which leaves larger particles vulnerable to etching by excess thiol. The isolated Au38 was characterized by mass spectrometry, thermogravimetric analysis, optical spectroscopy, and electrochemical techniques giving Au38(SC6)22 as the molecular formula for the cluster. These ultrasmall Au clusters behave analogously to molecules with a wide energy gap between occupied (HOMO) and unoccupied levels (LUMO) and undergo single-electron charging at room temperature in electrochemical experiments. Electrochemistry provides an elegant means to study the electronic structure and the chemical stability of the clusters at different charge states. We used cyclic voltammetry and scanning electrochemical microscopy to unequivocally demonstrate that Au38 can be reversibly oxidized to charge states z = +1 or +2; however, reduction to z = -1 leads to desorption of the protecting thiolate monolayer. Although this reductive desorption of thiol from the cluster surface is superficially analogous to electrochemical desorption of planar self-assembled monolayers (SAMs) from macroscopic electrodes, the molecular details of the process are likely to be complicated based on the current view that the thiolate monolayer in clusters is in fact composed of polymeric Au-S complexes.  相似文献   

10.
Two syntheses of gold nanoparticles with fluorinated alkyl and aryl thiolate ligands are reported. The fluorous Au nanoparticles are smaller than previous gold fluor-capped examples, and are in the 44-75 Au atom size range. Fluoroalkyl thiolate-protected (1H,1H,2H,2H-perfluorodecanethiolate) nanoparticles synthesized by a Brust reaction are a mixture of (mainly) approximately 8.5 kDa (ca. 44 core atoms) and approximately 14 kDa (ca. 75 core atoms) species, by MALDI-mass spectrometry. This composition is consistent with thermogravimetric analysis (TGA) results of the ligand shell composition. 19F NMR spectra display a progressive line broadening of resonances for fluorine sites closer to the Au core. A second synthetic route used a (ligand replacement) reaction of pentafluorobenzenethiol with Au55(PPh3)12Cl6. The exchange is (as previously observed for nonfluorinated thiols) accompanied by nanoparticle core size changes to produce a polydisperse mixture within which a Au75 core species could be electrochemically discerned by its characteristic 0.74 V electrochemical energy gap. Further characterization of the polydisperse nanoparticle product was done by HPLC, TEM, TGA, optical spectroscopy, and NMR data. Both varieties of fluorous nanoparticles exhibit solubilities typical of perfluorinated materials, as opposed to proteo versions.  相似文献   

11.
The synthesis and compositional analysis of four different gold clusters with protecting monolayers comprised solely of ferrocene hexanethiolate ligands is described. The gold nanoparticles have average core diameters of 1.4, 1.6, 2.0, and 2.2 nm with estimated average atom counts of 55, 140, 225, and 314 Au atoms and average monolayer coverages of 37, 39, 43, and 58 ferrocenated ligands, respectively. The data show unequivocally that the number of ferrocene hexanethiolate ligands bound to each core size is constrained by the steric requirements of the ferrocene head group; the ligand numbers are significantly smaller than those for hexanethiolate ligands bonded to analogous-sized Au cores. Voltammetry of dilute solutions of these nanoparticles shows a large ferrocene oxidation wave and, at more negative potentials, smaller one-electron waves for the quantized double-layer charging of the Au cores. Together, the ferrocenes and core of the ferrocenated Au314 nanoparticle deliver 60 electrons at the ferrocene oxidation potential, which amounts to a very large volume charge capacity, 7x10(9) C/m3, for an undiluted nanoparticle sample.  相似文献   

12.
We have developed a process to incorporate an integral membrane protein, Photosystem I (PSI), into an organic thin film at an electrode surface and thereby insulate the protein complex on the surface while mimicking its natural environment. The PSI complex, which is primarily more hydrophobic on the exterior than interior, is hydrophobically confined in vivo within the thylakoid membrane. To mimic the thylakoid membrane and entrap PSI on an electrode, we have designed a series of steps using a thin self-assembled monolayer (SAM) to adsorb and orient PSI followed by exposures to longer-chained methyl-terminated alkanethiols that place exchange with components of the original SAM in the interprotein domains. In this process, PSI is first adsorbed onto a HOC(6)S/Au substrate through a short exposure to a dilute solution of the protein to achieve a protein coverage of approximately 25%. The PSI/HOC(6)S/Au substrate is then placed into a solution containing one of various longer-chained alkanethiols including C(22)SH or C(18)OC(19)SH. Changes in thickness, interfacial capacitance, infrared spectra, and surface wettability were used to assess the extent of backfilling by the long-chained thiols. The coverage of the protein layer and the solvent used for backfilling affected the rate and quality of the SAM formed in the interprotein regions. After exposure of the PSI layer to solvents containing alkanethiols, there was only minor loss of protein on the surface and no real change in protein secondary structure as evidenced by reflectance absorption infrared spectroscopy.  相似文献   

13.
Phenylethanethiolate monolayer-protected Au38 and Au140 nanoclusters were modified by ligand place exchange with a series of thiolated peptides. The peptides were homooligomers based on the alpha-aminoisobutyiric acid unit. The effects of changing the peptide concentration and the peptide length in the capping monolayer were studied by differential pulse voltammetry. The results showed that the redox behavior of the nanoparticles can be affected very significantly by such modifications. For example, the first oxidation peak of Au38, a cluster displaying molecule-like behavior, could be shifted positively by as much as 0.7-0.8 V. Detectable redox shifts were noted even when one single oriented peptide was in the Au140 monolayer. These effects were attributed to the molecular dipole moments of the peptide ligands.  相似文献   

14.
The mechanism of a place-exchange reaction of ligand-protected Au nanoparticles was investigated using diradical disulfide spin labels. Analysis of reaction mixtures using a combination of GPC and EPR allowed us to determine concentration profile and propose a kinetic model for the reaction. In this model, only one branch of the disulfide ligand is adsorbed on the Au surface during exchange; the other branch forms mixed disulfide with the outgoing ligand. The two branches of the disulfide ligand therefore do not adsorb in adjacent positions on the surface of Au nanoparticles; this was ultimately proven by the powder EPR spectra of frozen exchange reaction mixtures. Our data also suggest the presence of different binding sites with different reactivity in the exchange reaction. The most-active sites are likely to be nanoparticle surface defects.  相似文献   

15.
Reduction of a mixture of Ph3PAuCl and CH3(CH2)5SH with NaBH4 yields predominately phosphine encapsulated nanoclusters with Au cores <1 nm, similar to the product isolated when the alkane thiol is not present in the reaction. When Et3N is added to a solution of Ph3PAuCl and CH3(CH2)5SH, a Au–S bond is formed, and the subsequent reduction of this thiolate results in the formation of >2 nm core thiol encapsulated Au nanoclusters as the majority product. This latter reduction has been examined in more detail through in situ 31P NMR experiments, and a solution exchange reaction is observed wherein the PPh3 generated by the reduction displaces thiol from the surface of the nanocluster product. This thiol displacement occurs with loss of a Au atom from the nanocluster core, as observed by NMR. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Edward E. FoosEmail:
  相似文献   

16.
Whereas thiols and thioethers are frequently used as binding units of oligodentate precursor molecules to fabricate self-assembled monolayers (SAMs) on coinage metal and semiconductor surfaces, their use for tridentate bonding configuration is still questionable. Against this background, novel tridentate thiol ligands, PhSi(CH(2)SH)(3) (PTT) and p-Ph-C(6)H(4)Si(CH(2)SH)(3) (BPTT), were synthesized and used as tripodal adsorbate molecules for the fabrication of SAMs on Au(111). These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The PTT and BPTT films were compared with the analogous systems comprised of same tripodal ligands with thioether instead of thiol binding units (anchors). XPS and NEXAFS data suggest that the binding uniformity, packing density, and molecular alignment of the thiol-based ligands in the respective SAMs is superior to their thioether counterparts. In addition, the thiol-based films showed significantly lower levels of contamination. Significantly, the quality of the PTT SAMs on Au(111) was found to be even higher than that of the films formed from the respective monodentate counterpart, benzenethiol. The results obtained allow for making some general conclusions on the specific character of molecular self-assembly in the case of tridentate ligands.  相似文献   

17.
A room-temperature Au38 nanoparticle polyether melt has been prepared by exchanging poly(ethylene glycol) (PEG) thiolate ligands, HS-C6-PEG163, into the organic protecting monolayer of Au38(PhC2)24 nanoparticles. Spectral and electrochemical properties verify that the Au38 core size is preserved during the exchange. Adding LiClO4 electrolyte, free PEG plasticizer, and/or partitioned CO2 leads to an ionically conductive nanoparticle melt, on which voltammetric, chronoamperometric, and impedance measurements have been made, respectively, of the rates of electron and ion transport in the melt. Electron transport occurs by electron self-exchange reactions, or electron hopping, between diffusively relatively immobile Au38(0) and Au38(1+) nanoparticles. The rates of physical diffusion of electrolyte ions (diffusion coefficients DCION) are obtained from ionic conductivities. The measured rates of electron and of electrolyte ion transport are very similar, as are their thermal activation energy barriers, observations that are consistent with a recently introduced ion atmosphere relaxation model describing control of electron transfer in semisolid ion and electron-conductive media. The model has been previously demonstrated using a variety of metal complex polyether melts; the present results extend it to electron transfers between Au nanoparticles. In ion atmosphere relaxation control, measured rates and energy barriers for electron transfer are not intrinsic values but are instead characteristic of competition between back-electron transfer caused by a Coulombic disequilibrium resulting from an electron transfer and relaxation of counterions around donor-acceptor reaction partners so as to reachieve local electroneutrality.  相似文献   

18.
Assembly of dodecyl thiocyanate (C12SCN) from ethanol solution onto Au(111)/mica substrates was investigated by scanning tunneling microscopy (STM), near edge X-ray absorption fine structure spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), and infrared reflection-absorption spectroscopy (IRRAS). Contrary to previous reports, thiolate monolayers formed by cleavage of the S-CN bond can be obtained whose quality is at least as good as that of self-assembled monolayers (SAMs) formed directly from the thiol analogue of C12SCN, dodecanethiol (C12SH). However, the achievable quality is strikingly dependent on the purity of the thiocyanate with even low levels of contamination impeding the formation of structurally well-defined monolayers.  相似文献   

19.
Ligand place‐exchange (LPE) reactions are extensively applied for the post‐functionalization of monolayer‐protected gold clusters (MPCs) by using excessive incoming ligands to displace initial ones. However, the modified MPCs are often enlarged or degraded; this results in ill‐defined size‐dependent properties. The growth of MPCs essentially involves an unprotected surface that is subsequently has gold atoms added or is fused with other gold cores owing to collision. Reported herein is a guideline for the selection of solvents to suppress unwanted MPC growth. Favorable solvents are those with significant affinity to gold or with low solubility for desorbed ligands because these properties retard LPE reactions and minimize the time available for unprotected gold cores. This finding provides a general and convenient approach to regulate the size of functionalized MPCs.  相似文献   

20.
New molecular melts of nanoparticles have been obtained by place exchanging thiolated poly(ethyleneglycol, MW = 350) ligands into the monolayer shells of the quantum dot nanoparticle Au38(phenylethylthiolate)24. These melts are nearly monodisperse in monolayer protected Au clusters with core diameters of approximately 1.2 nm. LiClO4 electrolyte can be dissolved in the melt via the PEG component of the protecting monolayer, producing an ionically conductive nanophase and enabling voltammetry of the undiluted, semisolid nanoparticle molecular melt. The optical and electrochemical charging properties of the small nanoparticles have molecule-like characteristics (as opposed to quantized double layer charging) both in dilute fluid-solvent solutions and as undiluted melts. Potential step chronoamperometry shows that electronic charge is transported through the melt by diffusion-like core-core electron hopping reactions with a rate constant of 2 x 104 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号