首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
We have successfully synthesized a spherical core-shell structure based on Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via a coprecipitation route. According to the careful examination by scanning electron microscopy (SEM), transmission electron microscopy energy-dispersive spectroscopy (TEM-EDS), and X-ray diffraction (XRD), it was found that the core-shell particle consisted of Li[Ni0.8Co0.2]O2 as the core and Li[Ni0.5Mn0.5]O2 as the shell, of which the thickness was estimated to be 1 to approximately 1.5 microm. Both the core and shell were dense as confirmed by SEM. Though the core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 delivered a slightly reduced initial discharge capacity, the capacity retention and thermal stability were significantly improved relative to those of the Li[Ni0.8Co0.2]O2 electrode without the Li[Ni0.5Mn0.5]O2 shell. The carbon/Li[Ni0.8Co0.2]O2 pouch cell underwent an explosive ignition during the nail penetration test, whereas the carbon/Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 cell remained stable, demonstrating the superior thermal stability of the core-shell electrode. As a new positive electrode material, the core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 is a significant breakthrough in the development of high-capacity lithium secondary batteries.  相似文献   

12.
王茹英  邱天  毛冲  杨文胜 《电化学》2012,(4):332-336
在恒定pH值下将层状钴铝双羟基复合金属氧化物(CoAl-LDH)均匀包覆在球状Ni(OH)2表面,与LiOH.H2O混合均匀后,经高温煅烧制得钴铝酸锂包覆镍酸锂0.08LiCo0.75Al0.25O2-0.92LiNiO2正极材料.电化学测试表明,0.08LiCo0.75Al0.25O2-0.92LiNiO2正极比容量高,具有良好的倍率性能和循环寿命,其0.1C放电比容量为211 mAh·g-1,0.5C放电比容量为195.6 mAh·g-1,3C放电比容量为161 mAh·g-1,0.5C 30周期循环后容量保持率为93.2%,明显优于LiNiO2和钴酸锂包覆镍酸锂0.08LiCoO2-0.92LiNiO2正极.  相似文献   

13.
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.  相似文献   

14.
采用溶胶-凝胶法在0≤x≤0.5的范围内合成了LiCo0.3-xGaxNi0.7O2的单相.对样品进行了XRD、粒度、比表面积和充放电循环测试.随着掺Ga量的增加,LiCo0.3-xGaxNi0.7O2的放电容量增加.其中LiCo0.25Ga0.05Ni0.7O2在2.8~4.3V和0.2C时的首次放电容量为177.5mA·h/g,经25次充放电循环后无容量衰减.LiCo0.25Ga0.05Ni0.7O2的放电容量随着放电倍率的增大而减小,随着充放电域压上限的增加而增大.但是材料的放电容量在高放电倍率下放电后仍可以完全恢复,且其循环性能与放电域压上限无关.此外,LiCo0.25Ga0.05Ni0.7O2在充放电循环中结构稳定,无相变发生.  相似文献   

15.
LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The structures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM) techniques. It was shown that the 700 ±C-annealed LiCo0.8M0.2O2 has an @-NaFeO2-like layered structure. All-solid-state thin-film batteries (TFBs) were fabricated with these films as the cathode and their electrochemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and electrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.  相似文献   

16.
年思宇  张燕  张国峰  秦攀  宋吉明 《化学通报》2019,82(11):989-994
以Co(NO_3)_2·6H_2O和Ni(NO_3)_2·6H_2O为钴源和镍源,采用溶剂热法一步合成了Co(OH)_2/Ni(OH)_2复合材料,通过煅烧该复合材料可得到NiCo_2O_4。采用XRD、SEM、BET等对材料进行了表征,结果表明,Co(OH)_2/Ni(OH)_2复合材料是薄片组成的花状形貌,比表面积为37. 48m~2/g。电化学性能测试表明,Co(OH)_2/Ni(OH)_2复合材料比NiCo_2O_4具有更高的比电容值和容量保持率。在0. 5A/g的电流密度下,复合材料比电容值可达到1097. 8F/g,而NiCo_2O_4比电容值仅为86. 1F/g。因此,与煅烧后的NiCo_2O_4材料相比,Co(OH)_2/Ni(OH)_2复合材料具有更加优良的电化学性能,这为高性能超级电容器材料的制备提供了一个新思路。  相似文献   

17.
采用等温理论模型,以甲烷催化氧化制合成气为模型反应,模拟非担载钙钛矿型致密透氧膜反应器的性能。分别研究了La_0.2Ba_0.8Fe_0.8Co_0.2O_(3-δ)、L30.2Sr0.8Fe0.8Co0.2O3-δ和SrFeCo0.5Ox三种透氧速率不同的膜材料、膜反应器的尺寸以及反应工艺条件对CH4转化率、CO选择性和H2/CO摩尔比的影响,对膜反应实验具有指导意义。  相似文献   

18.
王萌  吴锋  苏岳锋  陈实 《物理化学学报》2008,24(7):1175-1179
通过在硝酸钇水溶液浸渍并焙烧的简单工艺, 在LiCo1/3Ni1/3Mn1/3O2材料表面包覆了一层Y2O3. 采用X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 循环伏安(CV)和恒流充放电对包覆和未包覆的LiCo1/3Ni1/3Mn1/3O2进行了测试分析. 结果表明, Y2O3包覆并没有改变LiCo1/3Ni1/3Mn1/3O2的晶体结构, 只存在于LiCo1/3Ni1/3Mn1/3O2的表面; 与未包覆的材料相比, Y2O3包覆后的材料在高电位下具有更好的容量保持率和放电容量. CV测试表明, 包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应.  相似文献   

19.
TiO2包覆对LiCO1/3Ni1/3Mn1/3O2材料的表面改性   总被引:1,自引:0,他引:1  
为了提高材料LiCo1/3Ni1/3MnO2的循环件能,采用浸渍-水解法对其进行TiO2包覆.用X射线衍射(XRD)、电化学交流阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)和恒流允放电测试研究包覆材料的结构和电化学性能.TiO2仅在材料表面形成包覆层,并未改变材料的结构.TiO2包覆能提高材料LiCo1/3Ni1/3Mn1/3O2的倍率性能和循环性能,TiO2包覆后的材料在5.0C(1.0C=160 mA·g-1)下的放电容量达到0.2C下的66.0%,而包覆前的材料在5.0C下的放电容量仅为其0.2C下的31.5%.包覆后的材料在2.0C下循环12周后的容最没有衰减,而未包覆的材料容量保持率仅为94.4%.EIS测试表明包覆材料性能的提高是由于循环过程中材料的界面稳定性得到了提高.循环后材料的XRD和ICP-OES测试表明,包覆层能提高材料LiCo1/3Ni1/3Mn1/3O2的结构稳定性.  相似文献   

20.
TiO2包覆对LiCo1/3Ni1/3Mn1/3O2材料的表面改性   总被引:1,自引:1,他引:0  
为了提高材料LiCo1/3Ni1/3Mn1/3O2的循环性能, 采用浸渍-水解法对其进行TiO2包覆. 用X射线衍射(XRD)、电化学交流阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)和恒流充放电测试研究包覆材料的结构和电化学性能. TiO2仅在材料表面形成包覆层, 并未改变材料的结构. TiO2包覆能提高材料LiCo1/3Ni1/3Mn1/3O2的倍率性能和循环性能, TiO2包覆后的材料在5.0C(1.0C=160 mA·g-1)下的放电容量达到0.2C下的66.0%, 而包覆前的材料在5.0C下的放电容量仅为其0.2C下的31.5%. 包覆后的材料在2.0C下循环12周后的容量没有衰减, 而未包覆的材料容量保持率仅为94.4%. EIS测试表明包覆材料性能的提高是由于循环过程中材料的界面稳定性得到了提高. 循环后材料的XRD和ICP-OES测试表明, 包覆层能提高材料LiCo1/3Ni1/3Mn1/3O2的结构稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号