首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the generation of light carrying orbital angular momentum through Bragg diffraction into an electromagnetically induced coherence grating in a degenerate two-level system of cold cesium atoms. The induced Zeeman coherence grating is shown to contain the spatial phase structure of the incident beams. The exchange of phase information between a light beam with orbital angular momentum and a long-lived atomic coherence opens up the way to process quantum information encoded in a multidimensional state space.  相似文献   

2.
陈宝算  蒲继雄 《中国物理 B》2010,19(7):74202-074202
Based on the vectorial Debye theory,the focusing properties of the Gaussian beam through an annular high numerical aperture are studied numerically,including the intensity,the phase and the orbital angular momentum properties.Then the influence of certain parameters on the focusing properties is also investigated.It is shown that sub-wavelength elliptical light spots can be obtained.And there exists a vortex in the longitudinal component of the focused field even though the incident beam is Gaussian beam,indicating that the spin angular momentum of the elliptically polarized Gaussian beam is converted into the orbital angular momentum by the focusing.  相似文献   

3.
Chen L  She W 《Optics letters》2008,33(7):696-698
We demonstrate that the conversion of spin-to-orbital angular momentum in a focused vectorial light beam can be forbidden or enhanced by the electric-field-erased or increased spatial anisotropy of a uniaxial crystal undergoing the Pockels effect. A focused right-handed circularly polarized quasi-Gaussian beam incident on an electro-optic crystal strontium barium niobate is taken to illustrate the effect, and a conversion-forbidden electric field E(0)=-16.87 kV/cm is found. Of special interest is that single photons generated in this effect exhibit an entanglement of 2 deg of freedom of spin and orbital angular momentum, and it is electro-optically controllable.  相似文献   

4.
对拉盖尔-高斯光束经多圆孔衍射屏在远场平面上形成的干涉光场的相位和零值线进行了计算模拟.当入射光束的轨道角动量量子数为零时,实部零值线与虚部零值线在干涉光场中心点不相交,因而在该点上不能形成相位涡旋.当入射光束的轨道角动量量子数为+1和-1时,实部零值线与虚部零值线在干涉光场中心垂直并相交,干涉光场相应位置处的相位涡旋的符号相反.当入射光束的轨道角动量量子数为±2和±3时,有四条零值线相交于干涉光场的中心点上,并且实部零值线和虚部零值线交替分布,该交点处形成的相位涡旋的拓扑荷的值恰好与拉盖尔-高斯光束的轨道角动量量子数相等.这种结果可以用来测量涡旋光束的轨道角动量.  相似文献   

5.
We explain that, unlike the spin angular momentum of a light beam which is always intrinsic, the orbital angular momentum may be either extrinsic or intrinsic. Numerical calculations of both spin and orbital angular momentum are confirmed by means of experiments with particles trapped off axis in optical tweezers, where the size of the particle means it interacts with only a fraction of the beam profile. Orbital angular momentum is intrinsic only when the interaction with matter is about an axis where there is no net transverse momentum.  相似文献   

6.
All-optical angular control of the molecular alignment in liquid-crystal films is demonstrated using a laser beam having an elliptically shaped intensity profile. The material birefringence is unimportant, as proven by the fact that good alignment is obtained with unpolarized light. This raises the possibility of achieving optical angular control of transparent isotropic bodies. A general theoretical approach, based on light and matter angular momentum conservation, shows that the optical alignment is due to the internal compensation between the transfer of the orbital and the spin part of angular momentum of the incident photons to the material.  相似文献   

7.
The polarization state of a light beam is related to its spin angular momentum and can be represented on the Poincaré sphere. We propose a sphere for light beams in analogous orbital angular momentum states. Using the Poincaré-sphere equivalent, we interpret the rotational frequency shift for light beams with orbital angular momentum [Phys. Rev. Lett. 80, 3217 (1998)] as a dynamically evolving geometric phase.  相似文献   

8.
Analysis of the orbital angular momentum of paraxial light beams shows that a key role in the formation of this quantity is played by phase relations between longitudinal and transverse radiation fields. When a light beam is circularly polarized or has a helical wave front, the azimuthal component of the Poynting vector and the density of orbital angular momentum prove to be non-zero. In the case of circularly polarized radiation, the azimuthal component of the Poynting vector and the density of the orbital angular momentum can change the sign at different points in the cross section of the light beam, while the total orbital momentum of the beam remains quantized.  相似文献   

9.
Meng Xia 《中国物理 B》2021,30(11):114202-114202
We report the generation of a crossed, focused, optical vortex beam by using a pair of hybrid holograms, which combine the vortex phase and lens phase onto a spatial light modulator. We study the intensity distributions of the vortex beam in free propagation space, and the relationship of its dark spot size with the incident Gaussian beam's waist, the lens's focal length, and its orbital angular momentum. Our results show that the crossed, focused, vortex beam's dark spot size can be as small as 16.3μm and adjustable by the quantum number of the orbital angular momentum, and can be used to increase the density of trapped molecules. Furthermore, we calculate the optical potential of the blue-detuned, crossed vortex beam for MgF molecules. It is applicable to cool and trap neutral molecules by intensity-gradient-induced Sisyphus cooling, as the intensity gradient of such vortex beam is extremely high near the focal point.  相似文献   

10.
We introduce the concept of quasi-intrinsic angular momentum to denote fields for which the mean value of the angular momentum is unaltered by a lateral shift of the rotation axis but the spectrum changes. This property is exemplified by the orbital angular momentum of a beam of light about its propagation direction. We propose an interferometric experiment to measure efficiently the exact angular momentum spectrum and variance for light beams with any arbitrary spatial distribution.  相似文献   

11.
In the frame of the eikonal-based complex geometrical optics, which describes the phase front and cross section of a light beam using the quadratic expansion of a complex-valued eikonal, we investigate the transverse deflections of a polarized Gaussian beam (GB) in a smoothly inhomogeneous isotropic medium, which is called the spin Hall effect of the beam. The linear complex-valued eikonal terms are introduced firstly to describe the polarization-dependent transverse shifts of the beam in the inhomogeneous medium. We find that the polarization-dependent transverse shifts of the beams include two parts: one originates from the coupling between the spin angular momentum and the extrinsic orbital angular momentum due to the curve trajectory of the center of gravity of the polarized GB, and the other from the coupling between the spin angular momentum and the intrinsic orbital angular momentum due to the rotation of the beam with respect to the central ray.  相似文献   

12.
A ray-optics model is proposed to describe the vector beam transformation in a strongly focusing optical system. In contrast to usual approaches based on the focused field distribution near the focal plane, we use the beam pattern formed immediately after the exit aperture. In this cross section, details of the output field distribution are of minor physical interest but proper allowance is made for transformation of the beam polarization state. This enables the spin and orbital angular momentum representations to be obtained, which are valid for any cross section of the transformed beam. Simple analytical results are available for a transversely homogeneous, circularly polarized incident beam confined by a circular aperture. Variations of the spin and orbital angular momenta of the output beam with change of the focusing strength are analyzed. The analytical results are in good qualitative and reasonable quantitative agreement with the results of numerical calculations performed for the Gaussian and Laguerre-Gaussian beams. The model supplies an efficient and physically transparent means for qualitative analysis of the spin-to-orbital angular momentum conversion. It can be generalized to incident beams with complex spatial and polarization structure.  相似文献   

13.
From the viewpoint of classical electrodynamics, we identify the role of spin-to-orbital angular momentum conversion in spin Hall effect (SHE) of light. We introduce a distinct separation between spin and orbital angular momenta to clarify the spin–orbital interaction in conventional beam refraction. We demonstrate that the refractive index gradient can enhance or suppress the spin-to-orbital angular momentum conversion, and thus can control the SHE of light. We suggest that the metamaterial whose refractive index can be tailored arbitrarily may become a good candidate for amplifying or eliminating the SHE of light, and by properly facilitating the spin-to-orbital angular momentum conversion the SHE may be enhanced dramatically. The transverse spatial shifts governed by the spin-to-orbital angular momentum conversion, provide us a clear physical picture to clarify the role of refractive index gradient in the SHE of light. These findings provide a pathway for modulating the SHE of light and can be extrapolated to other physical systems.  相似文献   

14.
Methods for beam shaping with nonzero orbital angular momentum are studied using diffraction optical elements with the purpose of developing a source of single-photon states based on spontaneous parametric down-conversion of light in the LiNbO3 crystal in the cavity resonator. The probability of the coincidence of the number of photocounts in detecting signal and idle fields under pumping by a beam with the orbital angular momentum is simulated.  相似文献   

15.
Yongxin Liu  Jixiong Pu 《Optics Communications》2011,284(10-11):2424-2429
The far-field diffraction pattern of an elliptical vortex beam by a slit hexagon aperture is investigated theoretically and experimentally. It is found that the number of the dark spots or stripes in the Fraunhofer diffraction intensity distribution is just equal to the topological charge value of the measured optical vortex, and that the centre of each dark spot or stripe is just a phase singularity point. Based on this property, it provides us a simple way to detect the orbital angular momentum (OAM) of an optical vortex beam.  相似文献   

16.
Polarized light is a phenomenon familiar to anyone with a pair of polaroid sunglasses. Optical components that change the nature of the polarization from linear to circular are common in any undergraduate laboratory. Probably only physicists know that circularly polarized light carries with it an angular momentum that results from the spin of individual photons. Few physicists realize, however, that a light beam can also carry orbital angular momentum associated not with photon spin but with helical wavefronts. Beams of this type have been studied only over the last decade. In many instances orbital angular momentum behaves in a similar way to spin. But this is not always so: orbital angular momentum has its own distinctive properties and its own distinctive optical components. This article outlines the general behaviour of such beams; how they can be used to rotate microscopic particles; how they interact with nonlinear materials; the role they play in atom-light interactions and how the rotation of such beams results in a measurable frequency shift.  相似文献   

17.
Laguerre-Gaussian beams, as a special model with spiral phase structure, have been intensively investigated. Holographic grating method is a convenient method of generating Laguerre-Gaussian beams and measuring their orbital angular momenta. But due to some inevitable adverse factors such as lateral displacement, angular deflection and elliptical incident profile of incident beam, the practical effectiveness should be reevaluated. This paper is devoted to the study on the influences of the abovementioned three adverse factors on the holographic grating method. The characteristics of the mode decomposition of diffractive order and the relative powers of the orbital angular momentum eigen-states are also given.  相似文献   

18.
柯熙政  卢宁  杨秦岭 《物理学报》2010,59(9):6159-6163
描述了高阶椭圆厄米-高斯光束及其单光子平均轨道角动量,并分析了一些与其单光子轨道角动量变化的有关情况,通过计算机仿真简要进行了说明.最后分析了单光子轨道角动量在空间某范围的概率分布及其变化情况.研究结果表明,高阶椭圆厄米-高斯光束与物质相互作用时,其单光子平均轨道角动量的变化幅度随接触物质材料的不同而异.  相似文献   

19.
An introduction is given to the concepts of the spin and orbital angular momentum of light beams. Both spin and orbital angular momentum can be transferred from a light beam to particles held within optical tweezers, so forming an optical spanner. Each also give rise to a frequency shift when the light beam is rotated. This arises because quarter or half-wave plates and /2 or mode converters play equivalent roles for spin and orbital angular momentum respectively.  相似文献   

20.
Orbital angular momentum of the coherent beam has been intensively studied and promises potential applications in free space optical communication. But the orbital angular momentum of partially coherent beam is not well known. In this communication the coherent-mode representation method is adopted to describe the partially coherent beam and the orbital angular momentum spectrum is introduced for the partially coherent beam. The characteristics of the orbital angular momentum spectrum of partially coherent beam are discussed. To study the influence of the partial coherence on the optical link, the channel capacity is studied, with two kinds of available mode separators included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号