首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang P  Gai S  Liu Y  Wang W  Li C  Lin J 《Inorganic chemistry》2011,50(6):2182-2190
Uniform hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) phosphors have been successfully prepared via a urea-assisted homogeneous precipitation method using carbon spheres as templates, followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, kinetic decays, quantum yields (QY), and UV-visible diffuse reflectance spectra were employed to characterize the samples. The results show that hollow Lu(2)O(3):Ln spheres can be indexed to cubic Gd(2)O(3) phase with high purity. The as-prepared hollow Lu(2)O(3):Ln phosphors are confirmed to be uniform in shape and size with diameter of about 300 nm and shell thickness of approximate 20 nm. The possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow Lu(2)O(3):Ln microspheres has been proposed. Upon ultraviolet (UV) and low-voltage electron beams excitation, the hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) spheres exhibit bright red (Eu(3+), (5)D(0)-(7)F(2)) and green (Tb(3+), (5)D(4)-(7)F(5)) luminescence, which may find potential applications in the fields of color display and biomedicine.  相似文献   

2.
Zhang L  Yin M  You H  Yang M  Song Y  Huang Y 《Inorganic chemistry》2011,50(21):10608-10613
Mondispersed submicrometer GdPO(4):Eu(3+) hollow spheres were synthesized via an effective one-pot hydrothermal process. These hollow spheres have the average diameter of 200 nm, and the shell thickness is about 20 nm. The surface of the spheres consists of a number of nanorods with diameters of about 10 nm and lengths of about 50-80 nm. Both magnetic and luminescent properties of the obtained Eu(3+)-doped GdPO(4) hollow spheres were investigated. The hysteresis plot (M-H) analysis result indicates their paramagnetic property. The fluorescence spectra demonstrate that they emit orange-red color light originated from the (5)D(0) → (7)F(J) transitions of the Eu(3+) ions. Therefore, the obtained GdPO(4) hollow spheres hold promise for encapsulate drugs with controlled release. Moreover, the GdPO(4):Eu(3+) hollow spheres are attributes for bimodal magnetic resonance imaging (MRI)/optical bioimaging labeling.  相似文献   

3.
以稀土硝酸盐-葡萄糖的混合溶液作为前驱体,采用一步水热法和随后的热处理得到了多层核壳结构Gd_2O_3:Eu~(3+)空心微球,并用X-射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、X-射线能量色散光谱(EDS)和荧光光谱等测试手段对所得样品进行了表征.结果表明:所得空心球样品为纯的立方相的Gd_2O_3.具有规则的多层核壳空心结构,空心球的直径在2~3μm左右,壁厚约为100 nml,并且Gd_2O_3:Eu~(3+)空心球是由尺寸约为30 nm的球形纳米颗粒白组装而成.样品中含有Gd、Eu、O元素.该空心球样品具有强的Eu~(3+)的特征红光发射以及长的荧光寿命,可以用来作为时间分辨荧光标记物.  相似文献   

4.
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 °C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products’ morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g−1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g−1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity.  相似文献   

5.
We demonstrated that single-crystalline cobalt monoxide (CoO) hollow spheres and octahedra could be selectively synthesized via thermal decomposition of cobalt(II) acetylacetonate in 1-octadecene solvent in the presence of oleic acid and oleylamine. The morphologies and sizes of as-prepared CoO nanocrystals could be controlled by adjusting the reaction parameters. Cobalt oxide (Co(3)O(4)) hollow spheres and octahedra could also be selectively obtained via calcination method using corresponding CoO hollow spheres and octahedra as precursors. The morphology, size and structure of the final products were investigated in detail by XRD, SEM, TEM, HRTEM, DSC, TG, and XPS. The results revealed that the electrochemical performance of cobalt oxide hollow spheres is much better than that of cobalt oxide octahedra, which may be related to the degree of crystallinity, size, and morphology of cobalt oxides.  相似文献   

6.
CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.  相似文献   

7.
Well-defined nitrogen-doped, hollow SiO2/TiO2 hybrid spheres were successfully prepared through a two-step sol-gel synthesis combined calcination process using triethylamine as the nitrogen source. In this approach, polystyrene (PS)/silica microspheres were first synthesized. Subsequently, the amine-treated PS/SiO2/TiO2 hybrid spheres were obtained by sol-gel method. Finally, the elimination of the PS core, nitrogen-doping process, and crystallization of amorphous TiO2 were simultaneously conducted in the calcination process to acquire the final products. The as-prepared hybrid spheres were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results of XRD, FTIR, and XPS spectra indicated that nitrogen was really doped into the anatase TiO2 shell and confirmed that most nitrogen dopants might be present in the chemical environments of N-Ti-O and Ti-N-O. It was found that the absorption shoulder of nitrogen-doped hollow SiO2/TiO2 hybrid spheres vastly shifted to the visible region up to around 530 nm. The photoluminescence (PL) bands showed spectral lines at about 421, 472, and 529 nm, which were attributed to the self-trapped excitons, F and F+ centers. Moreover, the intensity of the PL spectra band of hollow SiO2/TiO2 hybrid spheres increased with as the amount of titanium tetrabutoxide (TBOT) precursor increased. However, the doping of nitrogen into hollow SiO2/TiO2 hybrid spheres led to the drastic quenching of photoluminescence because of the increase in the separation efficiency of the photoinduced electron and hole pairs.  相似文献   

8.
PAMAM树形分子为模板低温制备纳米硫化锌空心球   总被引:4,自引:0,他引:4  
Hollow ZnS spheres have been prepared in the presence of generation 3.5 poly (amidoamine) dendrimers with surface ester groups (G3.5-COOCH3 PAMAM dendrimer) as synthetic matrix template. The products obtained were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-Vis absorption. TEM studies show that the hollow spheres with diameters ranging from 80 to 100 nm are prepared. The range of wall thickness was estimated to be about 20~30 nm. It was found that the concentration of PAMAM dendrimer had a significant influence on the formation of hollow ZnS spheres. The possible formation mechanism of the hollow spherical structure is also discussed.  相似文献   

9.
Sonochemical preparation of hollow nanospheres and hollow nanocrystals   总被引:5,自引:0,他引:5  
Ceramic hollow spheres of MoS2 and MoO3 were obtained by sonochemical synthesis of MoS2 and MoO3 templated on silica nanoparticles (diameters 50-500 nm) followed by acid etching to remove the silica core. The resulting hollow materials have been characterized by elemental analysis, XPS, SEM, TEM, optical absorption, and hydrodesulfurization (HDS) studies. The TEM studies on the hollow ceramic materials indicate the formation of dispersed free spheres with a hollow core. The hollow materials obtained from thermally treated MoS2/SiO2 (450-700 degrees C) show the formation of layered MoS2 (lattice fringes approximately 6.2 A) with a wall thickness of 6-8 layers. The MoS2 hollow spheres are extremely active catalysts for the HDS of thiophene. Hollow spheres of MoO3 are prepared in a similar fashion. Surprisingly, upon heating, hollow crystals of MoO3 with sharp-edged truncated cubes containing inner voids are formed from the initial spheres.  相似文献   

10.
Sonochemical synthesis of hollow PbS nanospheres   总被引:5,自引:0,他引:5  
PbS hollow nanospheres with diameters of 80-250 nm have been synthesized by a surfactant-assisted sonochemical route. The nanostructures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), (high-resolution) transmission electron microscopy [(HR)TEM], and scanning electron microscopy (SEM) images. Structural characterization indicates that shells of the hollow spheres are composed of PbS nanoparticles with diameters of about 12 nm. The formation of the hollow nanostructure was explained by a vesicle-template mechanism, in which sonication and surfactant play important roles. Furthermore, uniform silica layers were successfully coated onto the hollow spheres via a modified St?ber method to enhance their performance for promising applications.  相似文献   

11.
The formation of mesoporous TiO2 spheres via a facile chemical process   总被引:6,自引:0,他引:6  
The mesoporous TiO(2) solid and hollow spheres have been synthesized via a controllable and simple chemical route. Structural characterization indicates that these TiO(2) mesoporous spheres after calcined at 500 degrees C have an obvious mesoporous structure with the diameters of 200-300 nm for solid spheres and 200-500 nm for hollow spheres. The average pore sizes and BET surface areas of the mesoporous TiO(2) solid and hollow spheres are 6.8, 7.0 nm and 162, 90 m(2)/g, respectively. Optical adsorption investigation shows that TiO(2) solid and hollow spheres possess a direct band gap structure with the optical band gap of 3.68 and 3.75 eV, respectively. A possible formation mechanism for TiO(2) solid and hollow spheres is discussed.  相似文献   

12.
By thermal decomposition in the presence only of oleylamine, sub-10 nm hexagonal NaLuF(4)-based nanocrystals codoped with Gd(3+), Yb(3+), and Er(3+) (or Tm(3+)) have been successfully synthesized. Sub-10 nm β-NaLuF(4): 24 mol % Gd(3+), 20 mol % Yb(3+), 1 mol % Tm(3+) nanocrystals display bright upconversion luminescence (UCL) with a quantum yield of 0.47 ± 0.06% under continuous-wave excitation at 980 nm. Furthermore, through the use of β-NaLuF(4):Gd(3+),Yb(3+),Tm(3+) nanocrystals as a luminescent label, the detection limit of <50 nanocrystal-labeled cells was achieved for whole-body photoluminescent imaging of a small animal (mouse), and high-contrast UCL imaging of a whole-body black mouse with a penetration depth of ~2 cm was achieved.  相似文献   

13.
ZnO nanotubes were synthesized in large scale by thermal decomposition of the precursors obtained via chemical reaction between Zn(CH3COO)2·2H2O and NaHCO3 in the presence of surfactant sodium dodecyl sulfate (SDS). The inner diameters of the tubes were in the range of 80~100 nm, and outer diameters in the range of 160~260 nm with lengths up to a few micrometers. The products were characterized with XRD, TEM, and SEM.  相似文献   

14.
Ag midnanoparticles (midnanoparticles are those particles whose diameters are in the range from 20 to 80 nm) with average size of 30-50 nm and tunable packing densities were formed on the surface of preformed Tollens-soaked silica spheres by a simple and controlled method. The process mainly involved two steps. In the first step the absorption of Ag(NH3)2(+) ions occurred on the silica spheres and in the second step Ag(NH3)2(+) ions on the silica spheres were reduced to Ag midnanoparticles in the presence of glucose solution. The amount of Ag midnanoparticles on the silica spheres could easily be tuned by varying the washing times in the process of preparing the Tollens-soaked silica spheres. The washing process also effectively avoided the reduction of Ag(NH3)2(+) ions and the nucleation of Ag particles in solution and easily produced more uniform Ag midnanoparticles on the silica spheres. Attributing to the uniform Ag midnanoparticles, the Ag midnanoparticle-coated silica spheres show unique optical properties in the UV-vis absorption spectra. The resulting Ag midnanoparticle-coated silica spheres were characterized with transmission electron microscopy, UV-vis-IR recording spectrophotometry, and X-ray photoelectron spectroscopy.  相似文献   

15.
Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 °C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 °C, exhibiting excellent thermal stability.  相似文献   

16.
以氯化亚铜,硝酸锌,氯化锡和硫脲作为反应前驱体,聚乙二醇作为模板,利用溶剂热方法合成Cu2ZnSnS4中空球。其中,聚乙二醇对于产物的最终形成起到关键作用。文章讨论了Cu2ZnSnS4中空球的生长机制,并通过X射线衍射(XRD)、拉曼光谱、场发射电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDX)、X射线光电子谱(XPS)、选区电子衍射谱(SAED)和紫外-可见光分光光度计(UV-Vis)等技术对样品的微结构以及光学性质进行了表征和分析。结果显示Cu2ZnSnS4中空球为四方晶体,尺寸为600 nm。其禁带宽度为1.52 eV,适用于制作光伏器件。  相似文献   

17.
"Critical" channel diameters were found (below which space confinement takes effect, leading to more uniform and ordered mesopore structures) in the study of evaporation-induced co-assembly of triblock-copolymer (P123) and silica molecular precursors (TEOS, tetraethyl orthosilicate) by employing channels in anodized aluminum oxide (AAO, 13-200 nm channel diameter) and in track-etched polycarbonate (EPC, 10-80 nm channel diameter) and for the first time we have observed a new mesopore structure (i.e., packed hollow spheres) in silica nanowires formed in AAO channels with diameters from 30 to 80 nm.  相似文献   

18.
以氯化亚铜,硝酸锌,氯化锡和硫脲作为反应前驱体,聚乙二醇作为模板,利用溶剂热方法合成Cu2ZnSnS4中空球。其中,聚乙二醇对于产物的最终形成起到关键作用。文章讨论了Cu2ZnSnS4中空球的生长机制,并通过X射线衍射(XRD)、拉曼光谱、场发射电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDX)、X射线光电子谱(XPS)、选区电子衍射谱(SAED)和紫外-可见光分光光度计(UV-Vis)等技术对样品的微结构以及光学性质进行了表征和分析。结果显示Cu2ZnSnS4中空球为四方晶体,尺寸为600 nm。其禁带宽度为1.52 eV,适用于制作光伏器件。  相似文献   

19.
Solvothermal synthesis of hollow ZnS spheres   总被引:5,自引:0,他引:5  
Mono-dispersed semiconductor ZnS hollow spheres with the diameter of 300-500 nm and the shell thickness of about 100-150 nm have been synthesized successfully by solvothermal method from ethanol solution in the presence of a special surfactant-quaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) made in our lab. The mono-dispersed ZnS hollow spheres are characterized by XRD, size distribution investment, UV-vis, TEM, and SEM, respectively. The UV-vis measurement indicates that there is a broad absorption at 210-280 nm, which is likely to be caused by "hollow-effect." A growth mechanism of ZnS hollow spheres has also been put forward and discussed.  相似文献   

20.
An effective method for loading Pt nanoparticles on monodispersed hollow carbon nanospheres by one-step pyrolysis of polystyrene spheres (PS) adsorbed with platinum (IV) ions was developed. The polystyrene spheres were firstly enwrapped with a layer of sucrose and cetyltrimethyl ammonium bromide (CTAB) micelles. Adsorption of platinum (IV) ions onto the polystyrene spheres was carried out via electrostatic interaction between the negatively charged platinum salt and the positively charged amino group in the CTAB. Pyrolysis of the PS-Pt (IV) precursors at 600 °C under nitrogen atmosphere resulted in the simultaneous decomposition of the sucrose to carbon and the adsorbed platinum complex to metallic Pt. During this process the polystyrene spheres was removed and hollow sphere of PtC formed. Nanocomposites of hollow carbon nanospheres with different platinum loading were synthesized and their electrocatalytic activity was evaluated using methanol as a model molecule. Results showed that the as-prepared hollow carbon nanospheres supported platinum catalysts have high electrocatalytic activity and long-term stability towards the oxidation of methanol. The present method is promising for the fabrication of carbon supported platinum catalysts for the direct methanol fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号