首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The 1-hexadecyl-3-vinylimidazolium bromide (hvimBr), a water-soluble long-chain imidazolium ionic liquid (IL) with surfactant properties, showed the ability to produce stable homogeneous aqueous dispersions of pristine Single-Walled Carbon Nanotubes (SWNTs). The purpose of this study is the improvement of SWNT dispersing ability by assessing the effect of different groups in position 3 of the imidazole ring. In this regard structural analogues were synthesized and, after characterization, their capability to dissolve SWNTs in water was investigated. Molecular Dynamics (MD) simulations have been performed to provide a semi-quantitative indication of the affinity of each dispersing agent toward SWNT and to attempt an explanation of the experimental results.  相似文献   

2.
Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. To reduce the conductivity ratio, the surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimethylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.  相似文献   

3.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

4.
This paper reports a new and practical route for synthesizing nanotube-polymeric ionic liquids gel by non-covalent functionalization of oxidized single-walled carbon nanotube (SWNT) surfaces with imidazolium-based poly(ionic liquids) (PILs), using in situ radical polymerization method. A black and homogeneous precipitate SWNTs was obtained as a gel form, which is well dispersed in aqueous solution without any aggregation. The formation of SWNT gels is explained by the electrostatic attractions or π-bonds between the SWNT surface and the PIL matrix. By anion-exchange reaction of PIL bound to SWNTs, hydrophilic anions in PIL were substituted with hydrophobic anions, resulting in an effective transfer of SWNT-PIL hydrogels to organogels. The result also showed that SWNTs can effectively improve the conductivity along with the thermal stability of nanocomposite gels.  相似文献   

5.
Gold nanoparticles were grown on single‐walled carbon nanotubes (SWNTs) coated with a thiol‐functionalized ionic liquid resulting in the formation of core‐shell structures referred to as SWNT‐IL‐Au nanohybrid materials. The nanohybrid materials were characterized by high‐resolution transmission electron microscopy (HR‐TEM), Raman‐, and UV/Vis absorption spectroscopy. The nanohybrid materials were found to enter lysosomes in HeLa cells and show negligible cytotoxicity. Interestingly, they have an enhanced NIR absorption that is effectively transferred into heat to cause localized hyperthermia, resulting in rapid cell death; overall, the material appears to have excellent properties for photothermal therapeutic applications.  相似文献   

6.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

7.
The much‐enhanced electrochemical responses of potassium ferricyanide and methylene blue (MB) were firstly explored at the glassy carbon electrode modified with single‐walled carbon nanotubes (SWNT/GCE), indicating the distinct electrochemical activity of SWNTs towards electroactive molecules. A hydrophobic room temperature ionic liquid (RTIL), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), was used as electrode modification material, which presented wide electrochemical windows, proton permeation and selective extraction ability. In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of ‘sandwich–type’ electrode was established with TMs confined by RTIL between the SWNT/GCE and the RTIL membrane. The strategy was used for electrochemical detection of ascorbic acid (AA) and dopamine (DA), and detection limits of 400 and 80 fmol could be obtained, respectively. The selective detection of DA in the presence of high amount of AA could also be realized. This protocol presented many attractive advantages towards voltammetric detection of TMs, such as low sample demand, low cost, high sensitivity, and good stability.  相似文献   

8.
We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.  相似文献   

9.
With the desire to mass produce any specific n,m type of single wall carbon nanotube (SWNT) from a small sample of the same material, we disclose here the preliminary work directed toward that goal. The ultimate protocol would involve taking a single n,m-type nanotube sample, cutting the nanotubes in that sample into many short nanotubes, using each of those short nanotubes as a template for growing much longer nanotubes of the same type, and then repeating the process. The result would be an amplification of the original tube type: a parent SWNT serving as the prolific progenitor of future identical SWNT types. As a proof-of-concept, we use here a short SWNT seed as a template for vapor liquid solid (VLS) amplification growth of an individual long SWNT. The original short SWNT seed was a polymer-wrapped SWNT, end-carboxylated, and further tethered with Fe salts at its ends. The Fe salts were to act as the growth catalysts upon subsequent reductive activation. Deposition of the short SWNT-Fe tipped species upon an oxide surface was followed by heating in air to consume the polymer wrappers, then reducing the Fe salts to Fe(0) under a H2-rich atmosphere. During this heating, the Fe(0) can etch back into the short SWNT so that the short SWNT acts as a template for new growth to a long SWNT that occurs upon introduction of C2H4 as a carbon source. Analysis indicated that the templated VLS-grown long SWNT had the same diameter and surface orientation as the original short SWNT seed, although amplifying the original n,m type remains to be proven. This study could pave the way for an amplified growth process of SWNTs en route to any n,m tube type synthesis from a starting sample of pure nanotubes.  相似文献   

10.
Single walled carbon nanotubes (SWNTs) are covalently functionalized during the electropolymerization of aniline in ionic liquids. In our experiment, 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6) containing 1 M trifluoroacetic acid (CF3COOH) was selected as the ionic liquid media to separate SWNTs and to perform the electropolymerization of aniline within. The morphology of the resulting composite material of SWNT and polyaniline (PANI) was studied by scanning electron microscopy (SEM). Covalent bonding was evidenced by the increase of intensity ratio of the D band vs. G band in the Raman spectrum, whilst SWNTs may also be incorporated as big dopant anions to the PANI backbone. This paper provides a novel method by which large amount of SWNTs (15 mg/ml) can be modified by aniline electrochemically. p-type conducting polymer and n-type SWNTs can be thus copolymerized and applied to organic photovoltaics.  相似文献   

11.
Electrochemical functionalization of single-walled carbon nanotubes (SWNTs) was one of selective, clean, and nondestructive chemical methods. But in previous studies it met difficulties in homogeneous electrografting of SWNTs in large quantities because the reaction was often localized on a very thin film (ca. 2 microm). In this report, a room-temperature ionic liquid (RTIL) supported three-dimensional network SWNT electrode was first utilized to break through this barrier. In this work, large quantities of SWNTs were considerably untangled in RTILs so as to greatly increase the effective area of the electrode. N-succinimidyl acrylate (NSA), as a model monomer, was dissolved in the supporting RTILs and was electrografted onto SWNTs (SWNTs-poly-NSA). As an application example, glucose oxidase was directly covalently anchored on the SWNTs-poly-NSA assembly, and the electrocatalytic oxidation of glucose in this assembly was investigated. RTILs opened a new path in electrochemical functionalization of SWNTs.  相似文献   

12.
Field-effect transistors were fabricated using high-density single-walled carbon nanotube (SWNT) thin films directly grown on suitable substrates. Such approach eliminated the variations of device behaviors in individual SWNT devices by utilizing a large number of SWNTs in each device. We have found that the behaviors of such devices are closely related to the surface charge densities around SWNTs in aqueous solutions. Adsorption of ionic surfactants on the surface could significantly modulate the device characteristics, which could be detected by measuring the conductance of the devices. The devices could be tuned to be sensitive to either anionic or cationic surfactants by tailoring the surface properties of SiO(2) substrates around SWNTs. This effect could be potentially used to design chemical and biological sensors.  相似文献   

13.
Vichchulada P  Zhang Q  Lay MD 《The Analyst》2007,132(8):719-723
Single-walled carbon nanotubes (SWNTs) have had significant impact on the development of gas sensors in the last decade. However, useful applications of SWNTs are limited by the lack of manufacturable routes to device formation. This Highlight article chronicles recent progress in this area and demonstrates the great promise of a new room temperature deposition method for SWNT networks in gas sensing applications. This liquid deposition technique allows the deposition of pre-treated, highly aligned SWNT networks on a wide variety of substrates. A significant advantage of SWNT-network sensors is that fluctuations in the electrical response of individual SWNTs become less important as the size of the network increases. Therefore, device properties can be controlled by the overall density of the network rather than the physical properties of any individual SWNT. At densities where semiconducting pathways dominate, highly sensitive thin-film chemoresistive sensors can be fabricated. Such devices also have higher signal-to-noise ratios and are easier to fabricate than devices based on a single SWNT.  相似文献   

14.
We examine the Breit-Wigner-Fano (BWF) line shape in the Raman spectra of carbon single-wall nanotubes (SWNTs) dispersed in aqueous suspensions. Bundling and electronic effects are studied by comparing undoped SWNTs (C-SWNTs) to boron-doped nanotubes (B-SWNTs) in a variety of different surfactant solutions. For SWNTs dispersed with nonionic surfactants that are less effective in debundling than ionic surfactants, the Raman spectra retain a large BWF feature. However, we demonstrate that even for SWNTs dispersed as isolated nanotubes by ionic surfactants the BWF feature may be present and that the intensity of the BWF is highly sensitive to the specific surfactant. In particular, surfactants with electron-donating groups tend to enhance the BWF feature. Also, modification of the SWNT electronic properties by boron doping leads to enhanced surfactant dispersion relative to undoped C-SWNTs and also to modification of the BWF feature. These observations are in agreement with reports demonstrating an enhancement of the BWF by bundling but also agree with reports that suggest electron donation can enhance the BWF feature even for isolated SWNTs. Importantly, these results serve to caution against using the lack or presence of a BWF feature as an independent measure of SWNT aggregation in surfactant dispersions.  相似文献   

15.
The charge transfer induced lithiation of single-wall carbon nanotubes (SWNTs) was investigated by in situ monitoring by Raman spectroscopy as lithium was added incrementally to a dispersion of SWNTs in liquid ammonia. Charge transfer from liquid ammonia solvated lithium to the SWNTs led to intercalation of lithium into the SWNT ropes, as well as to the semi-covalent lithiation of the SWNTs. Raman spectra of the SWNTs recorded as lithium was added showed a 30 wavenumber downshift of the G band (1594 cm−1) with the concomitant appearance of a new peak at 1350 cm−1 that was assigned as the signature of the lithiated SWNTs. Addition of 1-iodododecane to the lithiated SWNTs resulted in the covalent attachment of dodecyl groups. The intercalation of lithium throughout the SWNT ropes led to complete dodecylation of all individual SWNTs.  相似文献   

16.
HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of pi-pi stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes.  相似文献   

17.
Single wall carbon nanotubes (SWNT) are model systems for the study of electronic transport in one-dimensional conductors. They are expected to exhibit strong electronic correlations and non-Fermi liquid behavior as suggested by recent experiments. The possibility to induce supercurrents through such molecular wires is a challenging question both for experimentalists and theoreticians. In this paper we show experimental evidence of induced superconductivity in a SWNT. This proximity effect is observed in a single 1 nm diameter SWNT, in individual cristalline ropes containing about 100 nanotubes and also on multiwalled tubes. These samples are suspended as strings between two superconducting electrodes (double layer Au-Re, Au-Ta or Sn film) at a distance varying between 100 and 2 000 nm. This allows their structural study in a transmission electron microscope. When their resistance is low enough, SWNT become superconducting with surprisingly high critical currents (in the micro-Ampere range for a single tube of normal state resistance 25 kΩ). This critical current, extensively studied as function of temperature and magnetic field, exhibits unusual features which are not observed in conventional Superconducting-Normal-Superconducting junctions and can be related to the strong 1D character of these samples. We also show evidence of a huge sensitivity of dc transport properties of the tubes to electromagnetic radiation in the radio-frequency range.  相似文献   

18.
Room-temperature ionic liquids (RTILs) are intriguing solvents, which are recognized as “green” alternatives to volatile organics. Although RTILs are nonvolatile and can dissolve a wide range of charged, polar, and nonpolar organic and inorganic molecules, there remain substantial challenges in their use, not the least of which is the solvents’ high viscosity that leads to potential mass transfer limitations. In the course of this work, we discovered that the simple adsorption of the bacterial protease, proteinase K, onto single-walled carbon nanotubes (SWNTs) results in intrinsically high catalytic turnover. The high surface area and the nanoscopic dimensions of SWNTs offered high enzyme loading and low mass transfer resistance. Furthermore, the enzyme–SWNT conjugates displayed enhanced thermal stability in RTILs over the native suspended enzyme counterpart and allowed facile reuse. These enzyme–SWNT conjugates may therefore provide a way to overcome key operational limitations of RTIL systems.  相似文献   

19.
The new concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionic liquid fragments. Treatment of this surface with additional ionic liquid results in the formation of a multiple layer of free ionic liquid on the support. These layers serve as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved. Supported ionic liquid catalysis combines the advantages of ionic liquid media with solid support materials which enables the application of fixed-bed technology and the usage of significantly reduced amounts of the ionic liquid. The concept of supported ionic liquid catalysis has successfully been used for hydroformylation reactions and can be further expanded into other areas of catalysis.  相似文献   

20.
One major drawback associated with single-walled carbon nanotubes (SWNTs) in the liquid phase is their hydrophobicity-induced aggregation, which prevents utilization of the unique physical and chemical properties of single SWNTs. Recently it has been found that lysophospholipids, or single-tailed phospholipids, can readily form supramolecular complexes with SWNTs and the resultant SWNT solubility is superior to that provided by nucleic acids, proteins, and surfactants such as sodium dodecyl sulfate. Using transmission electron microscopy, lysophospholipids were observed forming striations on SWNTs in a vacuum. Although the morphology of the striations seemingly favors the hemimicellular model, serious doubts remain about the arrangement of individual lipids within the striations. Here we present an in silico study of the binding of zwitterionic lysophosphatidylcholine to an SWNT. We present compelling evidence that the binding of lipid surfactants to cylindrical nanostructures in the liquid phase does not obey any of the three popular models in the literature. Understanding the binding of lipid amphiphiles to SWNTs facilitates the bottom-up design of novel nanostructures for supramolecular chemistry and nanotechnology and fuels new field studies of nanotoxicity and nanomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号